Part Number Hot Search : 
5815EP ZLNB254D LPBS252 5815EP FQD24N08 3TK28XX AT45D021 0G000
Product Description
Full Text Search
 

To Download BC417143B-IQN-E4 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Device Features
Fully Qualified Bluetooth v2.0+EDR Enhanced Data Rate (EDR) compliant with v2.0.E.2 of specification for both 2Mbps and 3Mbps modulation modes Full Speed Bluetooth Operation with Full Piconet Support Scatternet Support 1.8V core, 1.8 to 3.6V I/O
www..com Low Power 1.8V operation
_aiEceEQJbniEea~a
Single Chip Bluetooth(R) v2.0+EDR System
Production Information Data Sheet For BC417143B-IQN-E4 BC417143B-IRN-E4 July 2005
_aiEceEQJbniEea~a= Product Data Sheet
8 x 8mm 96-ball TFBGA and 6 x 6mm 96-ball VFBGA Package options Minimum External Components Integrated 1.8V Regulator USB and Dual UART Ports Support for 802.11 Co-Existence Support for 8Mbit External Flash RoHS Compliant
General Description
_aiEceEQJbniEea~a is a single chip radio and baseband IC for Bluetooth 2.4GHz systems including enhanced data rates (EDR) to 3Mbps. BC417143B interfaces to 8Mbit of external Flash memory. When used with the CSR Bluetooth software stack, it provides a fully compliant Bluetooth system to v2.0 of the specification for data and voice communications..
External Memory RAM UART/ USB
2.4 GHz Radio
Applications
PCs Personal Digital Assistants (PDAs) Computer Accessories (compact Flash Cards, PCMCIA Cards, SD Cards and USB Dongles) Access Points Digital Cameras BlueCore4-External has been designed to reduce the number of external components required which ensures production costs are minimised. The device incorporates auto-calibration and built in self test (BIST) routines to simplify development, type approval and production test. All hardware and device firmware is fully compliant with the Bluetooth v2.0 + EDR specification (all mandatory and optional features). To improve the performance of both Bluetooth and 802.11b/g co-located systems a wide range of co-existence features are available including two types of hardware signalling: basic activity signalling and Intel WCS activity and channel signalling.
FLASH
RF IN RF OUT
Baseband DSP
I/O
SPI
PIO MCU PCM
XTAL
System Architecture
Product Data Sheet Production InformationCSR PLC2005 g2005BC417143B-ds-001P(c) 2005 Cambridge Silicon Radio Limited
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 1 of 116
Contents
Status Information .......................................................................................................................................... 8 Key Features .................................................................................................................................................... 9 Package Information ..................................................................................................................................... 10 3.1 8 x 8mm TFBGA Package Information .................................................................................................. 10 3.2 BC417143B-IQN-E4 Device Terminal Functions .................................................................................. 11 3.3 6 x 6mm VFBGA Package Information .................................................................................................. 16 3.4 BC417143B-IRN-E4 Device Terminal Functions ................................................................................... 17 4 Electrical Characteristics ............................................................................................................................. 22 4.1 Power Consumption .............................................................................................................................. 27 www..com 5 Radio Characteristics - Basic Data Rate ..................................................................................................... 29 5.1 Temperature +20C ............................................................................................................................... 29 5.1.1 Transmitter ................................................................................................................................ 29 5.1.2 Receiver .................................................................................................................................... 31 5.2 Temperature -40C ................................................................................................................................ 33 5.2.1 Transmitter ................................................................................................................................ 33 5.2.2 Receiver .................................................................................................................................... 33 5.3 Temperature -25C ................................................................................................................................ 34 5.3.1 Transmitter ................................................................................................................................ 34 5.3.2 Receiver .................................................................................................................................... 34 5.4 Temperature +85C ............................................................................................................................... 35 5.4.1 Transmitter ................................................................................................................................ 35 5.4.2 Receiver .................................................................................................................................... 35 5.5 Temperature +105C ............................................................................................................................. 36 5.5.1 Transmitter ................................................................................................................................ 36 5.5.2 Receiver .................................................................................................................................... 36 6 Radio Characteristics - Enhanced Data Rate ............................................................................................. 37 6.1 Temperature +20C ............................................................................................................................... 37 6.1.1 Transmitter ................................................................................................................................ 37 6.1.2 Receiver .................................................................................................................................... 38 6.2 Temperature -40C ................................................................................................................................ 39 6.2.1 Transmitter ................................................................................................................................ 39 6.2.2 Receiver .................................................................................................................................... 40 6.3 Temperature -25C ................................................................................................................................ 41 6.3.1 Transmitter ................................................................................................................................ 41 6.3.2 Receiver .................................................................................................................................... 42 6.4 Temperature +85C ............................................................................................................................... 43 6.4.1 Transmitter ................................................................................................................................ 43 6.4.2 Receiver .................................................................................................................................... 44 6.5 Temperature +105C ............................................................................................................................. 45 6.5.1 Transmitter ................................................................................................................................ 45 6.5.2 Receiver .................................................................................................................................... 46 7 Device Diagram ............................................................................................................................................ 47 8 Description of Functional Blocks ................................................................................................................ 48 8.1 RF Receiver ........................................................................................................................................... 48 8.1.1 Low Noise Amplifier .................................................................................................................. 48 8.1.2 Analogue to Digital Converter ................................................................................................... 48 8.2 RF Transmitter ....................................................................................................................................... 48 8.2.1 IQ Modulator ............................................................................................................................. 48 8.2.2 Power Amplifier ......................................................................................................................... 48 1 2 3
_aiEceEQJbniEea~a= Product Data Sheet
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 2 of 116
RF Synthesiser ...................................................................................................................................... 48 Clock Input and Generation ................................................................................................................... 48 Baseband and Logic .............................................................................................................................. 48 8.5.1 Memory Management Unit ....................................................................................................... 48 8.5.2 Burst Mode Controller ............................................................................................................... 48 8.5.3 Physical Layer Hardware Engine DSP ..................................................................................... 49 8.5.4 RAM (48Kbytes) ....................................................................................................................... 49 8.5.5 External Memory Driver ............................................................................................................ 49 8.5.6 USB .......................................................................................................................................... 49 8.5.7 Synchronous Serial Interface .................................................................................................... 49 8.5.8 UART ........................................................................................................................................ 49 www..com8.6 Microcontroller ....................................................................................................................................... 49 8.6.1 Programmable I/O .................................................................................................................... 49 8.6.2 802.11 Co-Existence Interface ................................................................................................. 49 9 CSR Bluetooth Software Stacks .................................................................................................................. 50 9.1 BlueCore HCI Stack ............................................................................................................................. 50 9.1.1 Key Features of the HCI Stack: Standard Bluetooth Functionality ........................................... 51 9.1.2 Key Features of the HCI Stack: Extra Functionality .................................................................. 52 9.2 BlueCore RFCOMM Stack .................................................................................................................... 53 9.2.1 Key Features of the BlueCore4-External RFCOMM Stack ....................................................... 54 9.3 BlueCore Virtual Machine Stack ............................................................................................................ 55 9.4 BlueCore HID Stack .............................................................................................................................. 56 9.5 BCHS Software ..................................................................................................................................... 57 9.6 Additional Software for Other Embedded Applications .......................................................................... 57 9.7 CSR Development Systems .................................................................................................................. 57 10 Enhanced Data Rate ..................................................................................................................................... 58 10.1 Enhanced Data Rate Baseband ............................................................................................................ 58 10.2 Enhanced Data Rate /4 DQPSK .......................................................................................................... 58 10.3 Enhanced Data Rate 8DPSK ................................................................................................................ 59 11 Device Terminal Descriptions ...................................................................................................................... 61 11.1 RF Ports ................................................................................................................................................ 61 11.1.1 RF_A and RF_B ....................................................................................................................... 61 11.1.2 Single-Ended Input (RX_IN) ..................................................................................................... 62 11.1.3 Transmit RF Power Control for Class 1 Applications (TX_PWR) ............................................. 62 11.1.4 Control of External RF Components ......................................................................................... 63 11.2 External Reference Clock Input (XTAL_IN) ........................................................................................... 64 11.2.1 External Mode ........................................................................................................................... 64 11.2.2 XTAL_IN Impedance in External Mode .................................................................................... 64 11.2.3 Clock Timing Accuracy ............................................................................................................. 64 11.2.4 Clock Start-Up Delay ................................................................................................................ 65 11.2.5 Input Frequencies and PS Key Settings ................................................................................... 66 11.3 Crystal Oscillator (XTAL_IN, XTAL_OUT) ............................................................................................. 67 11.3.1 XTAL Mode ............................................................................................................................... 67 11.3.2 Load Capacitance ..................................................................................................................... 68 11.3.3 Frequency Trim ......................................................................................................................... 69 11.3.4 Transconductance Driver Model ............................................................................................... 70 11.3.5 Negative Resistance Model ...................................................................................................... 70 11.3.6 Crystal PS Key Settings ............................................................................................................ 71 11.3.7 Crystal Oscillator Characteristics .............................................................................................. 71 11.4 Off-Chip Program Memory .................................................................................................................... 74 11.4.1 Minimum Flash Specification .................................................................................................... 75
8.3 8.4 8.5
_aiEceEQJbniEea~a= Product Data Sheet
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 3 of 116
11.4.2 Common Flash Interface .......................................................................................................... 75 11.4.3 Memory Timing ......................................................................................................................... 76 11.5 UART Interface ...................................................................................................................................... 78 11.5.1 UART Bypass ........................................................................................................................... 80 11.5.2 UART Configuration While RESET is Active ............................................................................ 80 11.5.3 UART Bypass Mode ................................................................................................................. 80 11.5.4 Current Consumption in UART Bypass Mode .......................................................................... 80 11.6 USB Interface ........................................................................................................................................ 81 11.6.1 USB Data Connections ............................................................................................................. 81 11.6.2 USB Pull-Up Resistor ............................................................................................................... 81 11.6.3 Power Supply ............................................................................................................................ 81 www..com 11.6.4 Self-Powered Mode .................................................................................................................. 82 11.6.5 Bus-Powered Mode .................................................................................................................. 83 11.6.6 Suspend Current ....................................................................................................................... 84 11.6.7 Detach and Wake_Up Signalling .............................................................................................. 84 11.6.8 USB Driver ................................................................................................................................ 84 11.6.9 USB 1.1 Compliance ................................................................................................................ 85 11.6.10 USB 2.0 Compatibility ............................................................................................................... 85 11.7 Serial Peripheral Interface ..................................................................................................................... 86 11.7.1 Instruction Cycle ....................................................................................................................... 86 11.7.2 Writing to BlueCore4-External .................................................................................................. 87 11.7.3 Reading from BlueCore4-External ............................................................................................ 87 11.7.4 Multi-Slave Operation ............................................................................................................... 87 11.8 PCM CODEC Interface .......................................................................................................................... 88 11.8.1 PCM Interface Master/Slave ..................................................................................................... 89 11.8.2 Long Frame Sync ..................................................................................................................... 90 11.8.3 Short Frame Sync ..................................................................................................................... 90 11.8.4 Multi-slot Operation ................................................................................................................... 91 11.8.5 GCI Interface ............................................................................................................................ 91 11.8.6 Slots and Sample Formats ....................................................................................................... 92 11.8.7 Additional Features ................................................................................................................... 92 11.8.8 PCM Timing Information ........................................................................................................... 93 11.8.9 PCM Configuration ................................................................................................................... 98 11.9 I/O Parallel Ports ................................................................................................................................. 100 11.9.1 PIO Defaults for BlueCore4-External ...................................................................................... 100 11.10 I2C Interface ........................................................................................................................................ 101 11.11 TCXO Enable OR Function ................................................................................................................. 102 11.12 RESETB .............................................................................................................................................. 103 11.12.1 Pin States on Reset ................................................................................................................ 103 11.12.2 Status after Reset ................................................................................................................... 104 11.13 Power Supply ...................................................................................................................................... 105 11.13.1 Voltage Regulator ................................................................................................................... 105 11.13.2 Sequencing ............................................................................................................................. 105 11.13.3 Sensitivity to Disturbances ...................................................................................................... 105 12 Application Schematic ................................................................................................................................ 106 13 Package Dimensions .................................................................................................................................. 107 13.1 8 x 8mm TFBGA 96-Ball Package ...................................................................................................... 107 13.2 6 x 6mm VFBGA 96-Ball Package ...................................................................................................... 108 14 Ordering Information .................................................................................................................................. 109 14.1 BlueCore4-External ............................................................................................................................. 109
_aiEceEQJbniEea~a= Product Data Sheet
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 4 of 116
15 RoHS Statement with a List of Banned Materials .................................................................................... 110 15.1 RoHS Statement .................................................................................................................................. 110 15.1.1 List of Banned Materials ......................................................................................................... 110 16 Contact Information .................................................................................................................................... 111 17 Document References ................................................................................................................................ 112 18 Terms and Definitions ................................................................................................................................ 113 19 Document History ....................................................................................................................................... 116
_aiEceEQJbniEea~a= Product Data Sheet
www..com
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 5 of 116
List of Figures Figure 3.1 Figure 3.2 Figure 7.1 Figure 9.1 Figure 9.2 Figure 9.3 Figure 9.4 Figure 10.1 Figure 10.2 www..com Figure 10.3 Figure 11.1 Figure 11.2 Figure 11.3 Figure 11.4 Figure 11.5 Figure 11.6 Figure 11.7 Figure 11.8 Figure 11.9 Figure 11.10 Figure 11.11 Figure 11.12 Figure 11.13 Figure 11.14 Figure 11.15 Figure 11.16 Figure 11.17 Figure 11.18 Figure 11.19 Figure 11.20 Figure 11.21 Figure 11.22 Figure 11.23 Figure 11.24 Figure 11.25 Figure 11.26 Figure 11.27 Figure 11.28 Figure 11.29 Figure 11.30 Figure 11.31 Figure 11.32 Figure 12.1 Figure 13.1 Figure 13.2 List of Tables Table 10.1 Data Rate Schemes.................................................................................................................... 58 BlueCore4-External 8 x 8mm Device Pinout (BC417143B-IQN-E4)........................................... 10 BlueCore4-External 6 x 6mm Device Pinout (BC417143B-IRN-E4)........................................... 16 BlueCore4-External Device Diagram .......................................................................................... 47 BlueCore HCI Stack.................................................................................................................... 50 BlueCore RFCOMM Stack.......................................................................................................... 53 Virtual Machine ........................................................................................................................... 55 HID Stack.................................................................................................................................... 56 Basic Rate and Enhanced Data Rate Packet Structure.............................................................. 58 /4 DQPSK Constellation Pattern ............................................................................................... 59 8DPSK Constellation Pattern...................................................................................................... 60 Circuit TX/RF_A and TX/RF_B ................................................................................................... 61 Circuit RX_IN .............................................................................................................................. 62 TCXO Clock Accuracy ................................................................................................................ 64 Actual Allowable Clock Presence Delay on XTAL_IN vs. PS Key Setting.................................. 65 Crystal Driver Circuit ................................................................................................................... 67 Crystal Equivalent Circuit............................................................................................................ 67 Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency...................... 71 Crystal Driver Transconductance vs. Driver Level Register Setting ........................................... 72 Crystal Driver Negative Resistance as a Function of Drive Level Setting .................................. 73 Memory Write Cycle.................................................................................................................... 76 Memory Read Cycle ................................................................................................................... 77 Universal Asynchronous Receiver .............................................................................................. 78 Break Signal................................................................................................................................ 79 UART Bypass Architecture ......................................................................................................... 80 USB Connections for Self-Powered Mode.................................................................................. 82 USB Connections for Bus-Powered Mode.................................................................................. 83 USB_DETACH and USB_WAKE_UP Signal.............................................................................. 84 Write Operation........................................................................................................................... 87 Read Operation........................................................................................................................... 87 BlueCore4-External as PCM Interface Master............................................................................ 89 BlueCore4-External as PCM Interface Slave.............................................................................. 89 Long Frame Sync (Shown with 8-bit Companded Sample) ........................................................ 90 Short Frame Sync (Shown with 16-bit Sample) .......................................................................... 90 Multi-slot Operation with Two Slots and 8-bit Companded Samples .......................................... 91 GCI Interface............................................................................................................................... 91 16-Bit Slot Length and Sample Formats ..................................................................................... 92 PCM Master Timing Long Frame Sync....................................................................................... 94 PCM Master Timing Short Frame Sync ...................................................................................... 94 PCM Slave Timing Long Frame Sync......................................................................................... 96 PCM Slave Timing Short Frame Sync ........................................................................................ 96 Example EEPROM Connection ................................................................................................ 101 Example TXCO Enable OR Function........................................................................................ 102 Application Circuit for Radio Characteristics Specification ....................................................... 106 BlueCore4-External 96-Ball TFBGA Package Dimensions....................................................... 107 BlueCore4-External 96-Ball VFBGA Package Dimensions ...................................................... 108
_aiEceEQJbniEea~a= Product Data Sheet
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 6 of 116
Table 10.2 Table 10.3 Table 11.1 Table 11.2 Table 11.3 Table 11.4 Table 11.5 Table 11.6 Table 11.7 Table 11.8 Table 11.9 www..com 11.10 Table Table 11.11 Table 11.12 Table 11.13 Table 11.14 Table 11.15 Table 11.16 Table 11.17 Table 11.18
2-Bits Determine Phase Shift Between Consecutive Symbols ................................................... 59 3-Bits Determine Phase Shift Between Consecutive Symbols ................................................... 60 TXRX_PIO_CONTROL Values................................................................................................... 63 External Clock Specifications...................................................................................................... 64 PS Key Values for CDMA/3G Phone TCXO Frequencies .......................................................... 66 Crystal Specification ................................................................................................................... 68 Flash Device Hardware Requirements ....................................................................................... 74 Flash Sector Boundaries............................................................................................................. 75 Common Flash Interface Algorithm Command Set Codes ......................................................... 75 Memory Write Cycle.................................................................................................................... 76 Memory Read Cycle ................................................................................................................... 77 Possible UART Settings.............................................................................................................. 78 Standard Baud Rates.................................................................................................................. 79 USB Interface Component Values .............................................................................................. 82 Instruction Cycle for an SPI Transaction..................................................................................... 86 PCM Master Timing .................................................................................................................... 93 PCM Slave Timing ...................................................................................................................... 95 PSKEY_PCM_CONFIG32 Description ....................................................................................... 99 PSKEY_PCM_LOW_JITTER_CONFIG Description................................................................... 99 Pin States of BlueCore4-External on Reset.............................................................................. 103
_aiEceEQJbniEea~a= Product Data Sheet
List of Equations Equation 11.1 Equation 11.2 Equation 11.3 Equation 11.4 Equation 11.5 Equation 11.6 Equation 11.7 Equation 11.8 Equation 11.9 Equation 11.10 Equation 11.11 Equation 11.12 Output Voltage with Load Current 10mA ................................................................................. 62 Output Voltage with No Load Current ......................................................................................... 62 Internal Power Ramping ............................................................................................................. 63 Load Capacitance ....................................................................................................................... 68 Trim Capacitance........................................................................................................................ 69 Frequency Trim........................................................................................................................... 69 Pullability..................................................................................................................................... 69 Transconductance Required for Oscillation ................................................................................ 70 Equivalent Negative Resistance ................................................................................................. 70 Baud Rate ................................................................................................................................... 79 PCM_CLK Frequency When Being Generated Using the Internal 48MHz Clock....................... 97 PCM_SYNC Frequency Relative to PCM_CLK .......................................................................... 97
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 7 of 116
Status Information
1
Status Information
The status of this Data Sheet is Production Information. CSR Product Data Sheets progress according to the following format: Advance Information Information for designers concerning CSR product in development. All values specified are the target values of the design. Minimum and maximum values specified are only given as guidance to the final specification limits and must not be considered as the final values. All detailed specifications including pinouts and electrical specifications may be changed by CSR without notice.
_aiEceEQJbniEea~a= Product Data Sheet
Pre-Production Information www..com Pinout and mechanical dimension specifications finalised. All values specified are the target values of the design. Minimum and maximum values specified are only given as guidance to the final specification limits and must not be considered as the final values. All electrical specifications may be changed by CSR without notice. Production Information Final Data Sheet including the guaranteed minimum and maximum limits for the electrical specifications. Production Data Sheets supersede all previous document versions.
Life Support Policy and Use in Safety-Critical Applications CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done at the sole discretion of the customer. CSR will not warrant the use of its devices in such applications. RoHS Compliance BlueCore4-External devices meet the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substance (RoHS). Trademarks, Patents and Licenses Unless otherwise stated, words and logos marked with TM or (R) are trademarks registered or owned by Cambridge Silicon Radio Limited or its affiliates. Bluetooth(R) and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR. Other products, services and names used in this document may have been trademarked by their respective owners. The publication of this information does not imply that any license is granted under any patent or other rights owned by Cambridge Silicon Radio Limited. CSR reserves the right to make technical changes to its products as part of its development programme. While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any errors.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 8 of 116
Key Features
2
Radio
Key Features
Auxiliary Features (Continued) Can run in low power mode from external 32kHz clock signal 8-bit ADC and DAC available to application Auto baud rate setting for different TCXO frequencies Power-on-reset cell detects low supply voltage Arbitrary power supply sequencing permitted 8-bit ADC available to applications Baseband and Software External 8Mbit Flash for complete system solution Internal 48Kbyte RAM, allows full speed data transfer, mixed voice and data, and full piconet operation, including all medium rate preset types Logic for forward error correction, header error control, access code correlation, CRC, demodulation, encryption bit stream generation, whitening and transmit pulse shaping. Supports all Bluetooth v2.0 + EDR features including eSCO and AFH Transcoders for A-law, -law and linear voice from host and A-law, -law and CVSD voice over air Physical Interfaces Synchronous serial interface up to 4Mbaud for system debugging UART interface with programmable baud rate up to 3Mbaud with an optional bypass mode Full speed USB v1.1 interface supports OHCI and UHCI host interfaces. Compliant with USB v2.0 Synchronous bi-directional serial programmable audio interface Optional I2CTM compatible interface Optional co-existence interfaces Bluetooth Stack CSR's Bluetooth Protocol Stack runs on-chip in a variety of configurations: Standard HCI (UART or USB) Fully embedded to RFCOMM Customised builds with embedded application code Package Options 96-ball TFBGA, 8 x 8 x 1.2mm, 0.65mm pitch 96-ball VFBGA, 6 x 6 x 1mm, 0.5mm pitch
Common TX/RX terminal simplifies external matching; eliminates external antenna switch BIST minimises production test time. No external trimming is required in production Full RF reference designs available Bluetooth v2.0 + EDR Specification compliant
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Transmitter +6dBm RF transmit power with level control from on-chip 6-bit DAC over a dynamic range >30dB Class 2 and Class 3 support without the need for an external power amplifier or TX/RX switch Supports /4 DQPSK (2Mbps) and 8DPSK (3Mbps) modulation Receiver Integrated channel filters Digital demodulator for improved sensitivity and co-channel rejection Real time digitised RSSI available on HCI interface Fast AGC for enhanced dynamic range Supports /4 DQPSK and 8DPSK modulation Channel classification Synthesiser Fully integrated synthesiser requires no external VCO varactor diode, resonator or loop filter Compatible with crystals between 8 and 32MHz (in multiples of 250kHz) or an external clock Accepts 7.68, 14.4, 15.36, 16.2, 16.8, 19.2, 19.44, 19.68, 19.8 and 38.4MHz TCXO frequencies for GSM and CDMA devices with sinusoidal or logic level signals Auxiliary Features Crystal oscillator with built-in digital trimming Power management includes digital shutdown, and wake up commands with an integrated low power oscillator for ultra low Park/Sniff/Hold mode Clock request output to control external clock On-chip linear regulator; 1.8V output from a 2.2 4.2V input
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 9 of 116
Package Information
3
3.1
Package Information
8 x 8mm TFBGA Package Information
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 3.1: BlueCore4-External 8 x 8mm Device Pinout (BC417143B-IQN-E4)
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 10 of 116
Package Information
3.2
Radio
BC417143B-IQN-E4 Device Terminal Functions
Ball B1 Pad Type Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Analogue Analogue Analogue Description Control output for external LNA (if fitted)
PIO[0]/RXEN
PIO[1]/TXEN RX_IN www..com RF_A RF_B
B2 D1 F1 E1
Control output for external PA (If fitted)
_aiEceEQJbniEea~a= Product Data Sheet
Single ended receiver input Transmitter output/switched receiver input Complement of RF_A
Synthesiser and Oscillator XTAL_IN XTAL_OUT
Ball L1 L2
Pad Type Analogue Analogue
Description For crystal or external clock input Drive for crystal
USB and UART UART_TX UART_RX UART_RTS UART_CTS USB_DP USB_DN
Ball G9 H10 H9 J11 K10 K11
Pad Type CMOS output, tri-state, with weak internal pull-up CMOS input with weak internal pull-down CMOS output, tri-state, with weak internal pull-up CMOS input with weak internal pull-down Bi-directional Bi-directional
Description UART data output UART data input UART request to send active low UART clear to send active low USB data plus with selectable internal 1.5k pull-up resistor USB data minus
PCM Interface PCM_OUT PCM_IN PCM_SYNC PCM_CLK
Ball F9 H11 G11 G10
Pad Type CMOS output, tri-state, with weak internal pull-down CMOS input, with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down
Description Synchronous data output Synchronous data input Synchronous data sync Synchronous data clock
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 11 of 116
Package Information
PIO Port PIO[11]
Ball G3
Pad Type Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional Bi-directional Bi-directional
Description Programmable input/output line
PIO[10]
F3
Programmable input/output line
PIO[9]
www..com
E3
Programmable input/output line
_aiEceEQJbniEea~a= Product Data Sheet
PIO[8]
D3
Programmable input/output line
PIO[7]
F10
Programmable input/output line Programmable input/output line or Optionally WLAN_Active/Ch_Data input for co-existence signalling Programmable input/output line or Optionally BT_Active output for co-existence signalling Programmable input/output line or Optionally BT_Priority/Ch_Clk output for co-existence signalling Programmable input/output line
PIO[6]/WLAN_Active/ Ch_Data
F11
PIO[5]/BT_Active
E9
PIO[4]/ BT_Priority/Ch_Clk
E10
PIO[3]
J3
PIO[2] AIO[0] AIO[1] AIO[2]
H3 K1 J2 K2
Programmable input/output line Programmable input/output line Programmable input/output line Programmable input/output line
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 12 of 116
Package Information
Test and Debug RESETB SPI_CSB SPI_CLK SPI_MOSI
www..com
Ball B10 C11 C10 D10 C9 C8
Pad Type CMOS input with weak internal pull-up CMOS input with weak internal pull-up CMOS input with weak internal pull-down CMOS input with weak internal pull-down CMOS output, tri-state, with weak internal pull-down CMOS input with strong internal pull-down
Description Reset if low. Input debounced so must be low for >5ms to cause a reset Chip select for Synchronous Serial Interface active low Serial Peripheral Interface clock Serial Peripheral Interface data input Serial Peripheral Interface data output For test purposes only(leave unconnected)
_aiEceEQJbniEea~a= Product Data Sheet
SPI_MISO TEST_EN
External Memory Address Interface A[18] A[17] A[16] A[15] A[14] A[13] A[12] A[11] A[10] A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]
Ball L7 K7 A10 L10 K9 J9 L9 J8 K8 L8 J7 J5 L6 K6 K5 L5 J4 K4 A3
Pad Type CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state
Description Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 13 of 116
Package Information
External Memory Data Interface D[15] D[14] D[13]
www..com D[12]
Ball B9 B8 C7 A7 B6 C5 A5 B4 A9 A8 B7 C6 A6 B5 C4 A4
Pad Type Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down
Description Data line Data line Data line
_aiEceEQJbniEea~a= Product Data Sheet
Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line
D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]
External Memory Interface REB WEB CSB
Ball C3 J6 B3
Pad Type CMOS output, tri-state with internal weak pull-up CMOS output, tri-state with internal weak pull-up CMOS output, tri-state with internal weak pull-up
Description Read enable for external memory. Active low. Write enable for external memory. Active low. Chip select for external memory. Active low.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 14 of 116
Package Information
Power Supplies and Control VREG_IN VREG_EN VDD_USB VDD_PIO
www..com
Ball L4 H2 L11 A2 D11 A11 E11 C1 J1
Pad Type VDD/Regulator input CMOS input VDD VDD VDD VDD VDD VDD VDD
Description Linear regulator input High or not connected to enable regulator. VSS to disable regulator Positive supply for UART/USB ports Positive supply for PIO(a) Positive supply for all other digital Input/Output ports(b) Positive supply for external memory and AIO ports Positive supply for internal digital circuitry Positive supply for RF circuitry Positive supply for VCO and synthesiser circuitry Positive supply for analogue circuitry and 1.8V regulated output. For performance, regulator decoupling and loads should be connected to ball adjacent to VREG_IN Ground connection for digital ports
_aiEceEQJbniEea~a= Product Data Sheet
VDD_PADS VDD_MEM VDD_CORE VDD_RADIO VDD_LO
VDD_ANA
L3
VDD/Regulator output
VSS_DIG
A1, D9, J10 D2, E2, F2 H1 K3
VSS
VSS_RADIO VSS_LO VSS_ANA
(a) (b)
VSS VSS VSS
Ground connections for RF circuitry Ground connections for VCO and synthesiser Ground connections for analogue circuitry
Positive supply for PIO[3:0] and PIO[11:8] Positive supply for SPI/PCM ports and PIO[7:4]
Unconnected Terminals N/C
Ball B11, C2, G1, G2
Description Leave unconnected
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 15 of 116
Package Information
3.3
6 x 6mm VFBGA Package Information
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 3.2: BlueCore4-External 6 x 6mm Device Pinout (BC417143B-IRN-E4)
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 16 of 116
Package Information
3.4
Radio
BC417143B-IRN-E4 Device Terminal Functions
Ball C1 Pad Type Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Analogue Analogue Analogue Description Control output for external LNA (if fitted)
PIO[0]/RXEN
PIO[1]/TXEN RX_IN www..com RF_A RF_B
C2 D1 F1 E1
Control output for external PA (If fitted)
_aiEceEQJbniEea~a= Product Data Sheet
Single ended receiver input Transmitter output/switched receiver input Complement of RF_A
Synthesiser and Oscillator XTAL_IN XTAL_OUT
Ball L1 L2
Pad Type Analogue Analogue
Description For crystal or external clock input Drive for crystal
USB and UART UART_TX UART_RX UART_RTS UART_CTS USB_DP USB_DN
Ball G9 H10 H9 J11 K10 K11
Pad Type CMOS output, tri-state, with weak internal pull-up CMOS input with weak internal pull-down CMOS output, tri-state, with weak internal pull-up CMOS input with weak internal pull-down Bi-directional Bi-directional
Description UART data output UART data input UART request to send active low UART clear to send active low USB data plus with selectable internal 1.5k pull-up resistor USB data minus
PCM Interface PCM_OUT PCM_IN PCM_SYNC PCM_CLK
Ball F9 H11 G11 G10
Pad Type CMOS output, tri-state, with weak internal pull-down CMOS input, with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down
Description Synchronous data output Synchronous data input Synchronous data sync Synchronous data clock
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 17 of 116
Package Information
PIO Port PIO[11]
Ball D2
Pad Type Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional with programmable strength internal pull-up/down Bi-directional Bi-directional Bi-directional
Description Programmable input/output line
PIO[10]
F3
Programmable input/output line
PIO[9]
www..com
G3
Programmable input/output line
_aiEceEQJbniEea~a= Product Data Sheet
PIO[8]
H3
Programmable input/output line
PIO[7]
F10
Programmable input/output line Programmable input/output line or optional WLAN_Active/Ch_Data input for co-existence signalling Programmable input/output line or optional BT_Active output for co-existence signalling Programmable input/output line or optional BT_Priority/Ch_Clk output for co-existence signalling Programmable input/output line
PIO[6]/WLAN_Active/ Ch_Data
F11
PIO[5]/BT_Active
E9
PIO[4]/ BT_Priority/Ch_Clk
E10
PIO[3]
B2
PIO[2] AIO[0] AIO[1] AIO[2]
J3 L4 K3 K2
Programmable input/output line Programmable input/output line Programmable input/output line Programmable input/output line
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 18 of 116
Package Information
Test and Debug RESETB SPI_CSB SPI_CLK SPI_MOSI
www..com
Ball D10 C11 B9 C10 C9 C8
Pad Type CMOS input with weak internal pull-up CMOS input with weak internal pull-up CMOS input with weak internal pull-down CMOS input with weak internal pull-down CMOS output, tri-state, with weak internal pull-down CMOS input with strong internal pull-down
Description Reset if low. Input debounced so must be low for >5ms to cause a reset Chip select for Synchronous Serial Interface. Active low. Serial Peripheral Interface clock Serial Peripheral Interface data input Serial Peripheral Interface data output For test purposes only (leave unconnected)
_aiEceEQJbniEea~a= Product Data Sheet
SPI_MISO TEST_EN
External Memory Address Interface A[18] A[17] A[16] A[15] A[14] A[13] A[12] A[11] A[10] A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]
Ball L7 K7 A9 L10 K9 J9 L9 J8 K8 L8 J7 K6 L6 K5 J5 L5 J4 K4 A2
Pad Type CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state CMOS output, tri-state
Description Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line Address line
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 19 of 116
Package Information
External Memory Data Interface D[15] D[14] D[13]
www..com D[12]
Ball B8 B7 C7 A6 B5 C5 A4 B3 A8 A7 B6 C6 A5 B4 C4 A3
Pad Type Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down Bi-directional with weak internal pull-down
Description Data line Data line Data line
_aiEceEQJbniEea~a= Product Data Sheet
Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line Data line
D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 20 of 116
Package Information
External Memory Interface REB WEB CSB
www..com
Ball C3 J6 D3
Pad Type CMOS output, tri-state with internal weak pull-up CMOS output, tri-state with internal weak pull-up CMOS output, tri-state with internal weak pull-up
Description Read enable for external memory. Active low. Write enable for external memory. Active low. Chip select for external memory. Active low.
_aiEceEQJbniEea~a= Product Data Sheet
Power Supplies and Control VREG_IN VREG_EN VDD_USB VDD_PIO VDD_PADS VDD_MEM VDD_CORE VDD_RADIO VDD_LO
Ball K1 H2 L11 A1 D11 B10 E11 G1 J1
Pad Type VDD/Regulator input CMOS input VDD VDD VDD VDD VDD VDD VDD
Description Linear regulator input High or not connected to enable regulator. VSS to disable regulator Positive supply for UART/USB ports Positive supply for PIO(a) Positive supply for all other digital Input/Output ports(b) Positive supply for external memory and AIO ports Positive supply for internal digital circuitry Positive supply for RF circuitry Positive supply for VCO and synthesiser circuitry Positive supply for analogue circuitry and 1.8V regulated output. For performance, regulator decoupling and loads should be connected to ball adjacent to VREG_IN Ground connection for digital ports
VDD_ANA
L3
VDD/Regulator output
VSS_DIG
B1, D9, J10 E2, F2, G2 H1 J2
VSS
VSS_RADIO VSS_LO VSS_ANA
(a) (b)
VSS VSS VSS
Ground connections for RF circuitry Ground connections for VCO and synthesiser Ground connections for analogue circuitry
Positive supply for PIO[3:0] and PIO[11:8] Positive supply for SPI/PCM ports and PIO[7:4]
Unconnected Terminals N/C
Ball A10, A11, B11, E3
Description Leave unconnected
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 21 of 116
Electrical Characteristics
4
Electrical Characteristics
Absolute Maximum Ratings Rating Storage temperature Supply voltage: VDD_RADIO, VDD_LO, VDD_ANA, and VDD_CORE Supply voltage: VDD_PADS, VDD_PIO and VDD_USB
www..com Supply voltage: VREG_IN
Min -40C -0.4V -0.4V -0.4V VSS-0.4V
Max +150C 2.2V 3.7V
_aiEceEQJbniEea~a= Product Data Sheet
5.6V VDD+0.4V
Other terminal voltages
Recommended Operating Conditions Operating Condition Operating temperature range Guaranteed RF performance range(a) Min -40C -40C 1.7V 1.7V 2.2V Max +105C +105C 1.9V 3.6V 4.2V(b)
Supply voltage: VDD_RADIO, VDD_LO, VDD_ANA and VDD_CORE Supply voltage: VDD_PADS, VDD_PIO and VDD_USB Supply voltage: VREG_IN
(a) (b)
Typical figures are given for RF performance between -40C and +105C. The device will operate without damage with VREG_IN as high as 5.6V. However the RF performance is not guaranteed above 4.2V.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 22 of 116
Electrical Characteristics
Input/Output Terminal Characteristics (Supply) Linear Regulator Normal Operation Output Voltage(a) (Iload = 70 mA) Temperature Coefficient Output Noise(b) (c) 1.70 -250 140 5 25 1.78 35 1.85 +250 1 50 50 4.2(e) 350 50 V ppm/C mV rms mV/A s mA A V mV A Min Typ Max Unit
Load Regulation (Iload < 100 mA)
www..com Settling Time(b) (d)
_aiEceEQJbniEea~a= Product Data Sheet
Maximum Output Current Minimum Load Current Input Voltage Dropout Voltage (Iload = 70 mA) Quiescent Current (excluding Ioad, Iload < 1mA) Low Power Mode(f) Quiescent Current (excluding Ioad, Iload < 100A) Disabled Mode(g) Quiescent Current
(a) (b) (c) (d) (e)
4
7
10
A
1.5
2.5
3.5
A
(f) (g)
For optimum performance, the VDD_ANA ball adjacent to VREG_IN should be used for regulator output. Regulator output connected to 47nF pure and 4.7F 2.2 ESR capacitors. Frequency range is 100Hz to 100kHz. 1mA to 70mA pulsed load. Operation up to 5.6V is permissible without damage and without the output voltage rising sufficiently to damage the rest of BlueCore4-External, but output regulation and other specifications are no longer guaranteed at input voltages in excess of 4.2V. Low power mode is entered and exited automatically when the chip enters/leaves Deep Sleep mode. Regulator is disabled when VREG_EN is pulled low. It is also disabled when VREG_IN is either open circuit or driven to the same voltage as VDD_ANA.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 23 of 116
Electrical Characteristics
Input/Output Terminal Characteristics (Digital) Digital Terminals Input Voltage Levels VIL input logic level low VIH input logic level high Output Voltage Levels
www..com output logic level low, VOL
Min
Typ
Max
Unit
2.7V VDD 3.0V 1.7V VDD 1.9V
-0.4 -0.4 0.7VDD
-
+0.8 +0.4 VDD+0.4
V V V
_aiEceEQJbniEea~a= Product Data Sheet
(lo = 4.0mA), 2.7V VDD 3.0V VOL output logic level low, (lo = 4.0mA), 1.7V VDD 1.9V VOH output logic level high, (lo = -4.0mA), 2.7V VDD 3.0V VOH output logic level high, (lo = -4.0mA), 1.7V VDD 1.9V Input and Tri-state Current with: Strong pull-up Strong pull-down Weak pull-up Weak pull-down I/O pad leakage current CI Input Capacitance
-
-
0.2
V
-
-
0.4
V
VDD-0.2
-
-
V
VDD-0.4
-
-
V
-100 +10 -5.0 +0.2 -1 1.0
-40 +40 -1.0 +1.0 0 -
-10 +100 -0.2 +5.0 +1 5.0
A A A A A pF
Input/Output Terminal Characteristics (USB) USB Terminals VDD_USB for correct USB operation Input Threshold VIL input logic level low VIH input logic level high Input Leakage Current VSS_PADS < VIN < VDD_USB(a) CI Input capacitance Output Voltage Levels to Correctly Terminated USB Cable VOL output logic level low VOH output logic level high
(a)
Min 3.1
Typ
Max 3.6
Unit V
0.7VDD_USB
-
0.3VDD_USB -
V V
-1 2.5
1 -
5 10.0
A pF
0.0 2.8
-
0.2 VDD_USB
V V
Internal USB pull-up disabled
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 24 of 116
Electrical Characteristics
Input/Output Terminal Characteristics (Reset) Power-on Reset VDD_CORE falling threshold VDD_CORE rising threshold Hysteresis Min 1.40 1.50 0.05 Typ 1.50 1.60 0.10 Max 1.60 1.70 0.15 Unit V V V
Input/Output Terminal Characteristics (Auxilliary ADC)
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Auxiliary ADC Resolution Input voltage range (LSB size = VDD_ANA/255) Accuracy (Guaranteed monotonic) Offset Gain Error Input Bandwidth Conversion time Sample rate(a)
(a)
Min 0 INL DNL -1 0 -1 -0.8 -
Typ 100 2.5 -
Max 8 VDD_ANA 1 1 1 0.8 700
Unit Bits V LSB LSB LSB % kHz s Samples/s
ADC is accessed through the VM function. The sample rate given is achieved as part of this function.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 25 of 116
Electrical Characteristics
Input/Output Terminal Characteristics (Clocks) Crystal Oscillator Crystal frequency(a) Min 8.0 5.0 2.0 870 Typ 6.2 0.1 1500 Max 32.0 8.0 2400 Unit MHz pF pF mS
Digital trim range(b) Trim step size(b) Transconductance Negative resistance(c)
_aiEceEQJbniEea~a= Product Data Sheet
www..com External Clock
Input frequency(d) Clock input level(e)
7.5 0.2 -
7
40.0 VDD_ANA 15 -
MHz V pk-pk ps rms k pF
Allowable Jitter XTAL_IN input impedance XTAL_IN input capacitance
(a) (b) (c) (d) (e)
Integer multiple of 250kHz The difference between the internal capacitance at minimum and maximum settings of the internal digital trim. XTAL frequency = 16MHz; XTAL C0 = 0.75pF; XTAL load capacitance = 8.5pF. Clock input can be any frequency between 8MHz and 40MHz in steps of 250kHz plus CDMA/3G TCXO frequencies of 7.68, 14.44, 15.36, 16.2, 16.8, 19.2, 19.44, 19.68, 19.8 and 38.4MHz. Clock input can be either sinusoidal or square wave. If the peaks of the signal are below VSS_ANA or above VDD_ANA. A DC blocking capacitor is required between the signal and XTAL_IN.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 26 of 116
Electrical Characteristics
4.1
Power Consumption
Connection Type Master Master Slave Slave Master Master Master Master Master Slave Slave Slave Slave Slave Slave UART Rate (kbps) 115.2 115.2 115.2 115.2 115.2 115.2 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4 -
Operation Mode Page scan Inquiry and page scan ACL No traffic ACL With file transfer ACL www..com No traffic ACL With file transfer ACL 40ms sniff ACL 1.28s sniff SCO HV1 SCO HV3 SCO HV3 30ms sniff ACL 40ms sniff ACL 1.28s sniff Parked 1.28s beacon SCO HV1 SCO HV3 SCO HV3 30ms sniff Standby Host connection(a) low)(a)
Average 0.42 0.76 4.60 10.3 17.0 24.7 2.40 0.37 39.2 20.3 19.8 2.11 0.42 0.20 39.1 24.8 19.0 40 34
Unit mA mA mA mA
_aiEceEQJbniEea~a= Product Data Sheet
mA mA mA mA mA mA mA mA mA mA mA mA mA A A
Reset (RESETB
(a)
Low power mode on the linear regulator is entered and exited automatically when the chip enters/leaves Deep Sleep mode. For more information about the electrical characteristics of the linear regulator, see section 4 in this document.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 27 of 116
Electrical Characteristics
Typical Peak Current @ 20oC Device Activity/State Peak current during cold boot Peak TX current Master Peak RX current Master Peak TX current Slave Peak RX current Slave
www..com Conditions
Current m(A) 57.9 51.5 39.0 52.0 45.5
_aiEceEQJbniEea~a= Product Data Sheet
Firmware VREG_IN, VDD_PIO, VDD_PADS Host Interface Baud rate Clock source Output power
HCI 19.2 3.15V UART 115200 26MHz crystal 0dBm
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 28 of 116
Radio Characteristics - Basic Data Rate
5
Radio Characteristics - Basic Data Rate
BlueCore4-External meets the Bluetooth v2.0+EDR specification when used in a suitable application circuit between -40C and +105C. TX output is guaranteed unconditionally stable over guaranteed temperature range.
Important Note:
5.1 5.1.1
Temperature +20C Transmitter
VDD = 1.8V Min 25 resolution(e) Typ 5 1.5 2 35 0.5 790 -35 Temperature = +20C Max 1.2 1000 -20 Bluetooth Specification -6 to +4(c) 16 1000 -20 Unit dBm dB dB dB dB kHz dBm
Radio Characteristics
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Maximum RF transmit power(a) (b) RF power variation over temperature range with compensation enabled()(d) RF power variation over temperature range with compensation disabled()(d) RF power control range RF power range control
20dB bandwidth for modulated carrier Adjacent channel transmit power F = F0 2MHz(f) (g) Adjacent channel transmit power F = F0 3MHz(f) (g) Adjacent channel transmit power F = F0 > 3MHz(f) (g) f1avg Maximum Modulation f2max Minimum Modulation f1avg/f2avg Initial carrier frequency tolerance Drift Rate Drift (single slot packet) Drift (five slot packet) 2nd 3rd Harmonic Content Harmonic Content
(a) (b) (c) (d) (e) (f) (g)
-
-45
-40
-40
dBm
140 115 0.80 -75 -
-50 163 154 0.98 6 7 8 9 -60 -45
-40 175 75 20 25 40 -30 -40
-40 140dBm kHz kHz kHz kHz/50s kHz kHz dBm dBm
The BlueCore4-External firmware maintains the transmit power within Bluetooth v2.0+EDR specification limits Measurement using PSKEY_LC_MAX_TX_POWER setting corresponding to a PSKEY_LC_POWER_TABLE power table entry = 63 Class 2 RF transmit power range, Bluetooth specification v2.0+EDR These parameters are dependent on matching circuit used, and its behaviour over temperature, therefore these parameters are not under CSR's direct control Resolution guaranteed over the range -5dB to -25dB relative to maximum power for Tx Level > 20 Measured at F0 = 2441MHz BlueCore4-External guaranteed to meet ACP performance in Bluetooth v2.0+EDR specification, three exceptions allowed.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 29 of 116
Radio Characteristics - Basic Data Rate
Radio Characteristics
VDD = 1.8V Frequency (GHz) 0.869 - 0.894(a) 0.869 0.925 0.894(b) 0.960(a)
Temperature = +20C Min Typ -124 -128 -128 -138 -133 -135 -134 -134 -136 -139 Max Cellular Band GSM 850 CDMA 850 GSM 900 GPS GSM 1800 / DCS 1800 PCS 1900 GSM 1900 CDMA 1900 W-CDMA 2000 W-CDMA 2000 dBm / Hz Unit
Emitted power in cellular bands measured at unbalanced port of the www..com Output power balun. 6dBm
1.570 - 1.580(c) 1.805 - 1.880(a) 1.930 1.930 1.930 1.990(d) 1.990(a) 1.990(b)
_aiEceEQJbniEea~a= Product Data Sheet
2.110 - 2.170(b) 2.110 - 2.170(e)
(a) (b) (c) (d) (e)
Integrated in 200kHz bandwidth and then normalised to 1Hz bandwidth Integrated in 1.2MHz bandwidth and then normalised to 1Hz bandwidth Integrated in 1MHz bandwidth and then normalised to 1Hz bandwidth Integrated in 30kHz bandwidth and then normalised to 1Hz bandwidth Integrated in 5MHz bandwidth and then normalised to 1Hz bandwidth
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 30 of 116
Radio Characteristics - Basic Data Rate
5.1.2
Receiver
VDD = 1.8V Frequency (GHz) 2.402 Min -20 Min -10 -27 Typ -85.0 -85.0 -87.0 10 Typ 0 0 Temperature = +20C Max -70 dBm Bluetooth Specification Unit
Radio Characteristics
Sensitivity at 0.1% BER for all packet types
2.441 2.480
_aiEceEQJbniEea~a= Product Data Sheet
w w w . D a t aMaximum receivedc o m at 0.1% BER S h e e t 4 U . signal
Max -
-20 Bluetooth Specification -10 -27
dBm Unit
Frequency (MHz) Continuous power required to block Bluetooth reception (for input power of -67dBm with 0.1% BER) measured at the unbalanced port of the balun. C/I co-channel Adjacent channel selectivity C/I F = F0 + 1MHz(a) (b) Adjacent channel selectivity C/I F = F0 - 1MHz(a) (b) Adjacent channel selectivity C/I F = F0 + 2MHz(a) (b) Adjacent channel selectivity C/I F = F0 - 2MHz(a) (b) Adjacent channel selectivity C/I F = F0 + 3MHz(a) (b) Adjacent channel selectivity C/I F = F0 -5MHz(a) (b) Adjacent channel selectivity C/I F = FImage(a) (b) Maximum level of intermodulation interferers(c) Spurious output level(d)
(a) (b) (c) (d)
30-2000 2000-2400
dBm 2500-3000 -27 0 -27
-
6 -5
11 0
11 0
dB dB
-
-4
0
0
dB
-
-44
-30
-30
dB
-
-23
-20
-20
dB
-
-45
-40
-40
dB
-
-45
-40
-40
dB
-39 -
-22 -30 -150
-9 -
-9 -39 -
dB dBm dBm/Hz
Up to five exceptions are allowed in v2.0+EDR of the Bluetooth specification. BlueCore4-External is guaranteed to meet the C/I performance as specified by the Bluetooth specification v2.0+EDR. Measured at F = 2441MHz Measured at f1 - f2 = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c., i.e., wanted signal at -64dBm. Measured at unbalanced port of the balun. Integrated in 100kHz bandwidth and normalised to 1Hz. Actual figure is typically below -150dBm/Hz except for peaks of -70dbm at 1600MHz, -60dBm inband at 2.4GHz and -70dBm at 3.2GHz.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 31 of 116
Radio Characteristics - Basic Data Rate
Radio Characteristics
VDD = 1.8V Frequency (GHz) 0.824 - 0.849 0.824 - 0.849
Temperature = +20C Min Typ 0 -10 -5 0 0 -7 -10 -2 -12 -7 0 0 -12 -14 Max Cellular Band GSM 850 CDMA 850 GSM 900 GSM 1800 / DCS 1800 GSM 1900 / PCS 1900 CDMA 1900 W-CDMA 2000 GSM 850 CDMA 850 GSM 900 GSM 1800 / DCS 1800 GSM 1900 / PCS 1900 CDMA 1900 W-CDMA 2000 dBm dBm Unit
Continuous power in cellular bands required to block Bluetooth reception (for input power of -67dBm with 0.1% BER) measured www..com at unbalanced port of the balun.
0.880 - 0.915 1.710 - 1.785 1.850 - 1.910 1.850 - 1.910 1.920 - 1.980 0.824 - 0.849 0.824 - 0.849
_aiEceEQJbniEea~a= Product Data Sheet
Continuous power in cellular bands required to block Bluetooth reception (for input power of -72dBm with 0.1% BER) measured at unbalanced port of the balun.
0.880 - 0.915 1.710 - 1.785 1.850 - 1.910 1.850 - 1.910 1.920 - 1.980
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 32 of 116
Radio Characteristics - Basic Data Rate
5.2 5.2.1
Temperature -40C Transmitter
VDD = 1.8V Min Typ 6 35 0.5 790 -35 Temperature = -40C Max 1000 -20 Bluetooth Specification -6 to +4(b) 16 1000 -20 Unit dBm dB dB kHz dBm
Radio Characteristics
Maximum RF transmit power(a) RF power control range
www..com RF power range control resolution
25 -
_aiEceEQJbniEea~a= Product Data Sheet
20dB bandwidth for modulated carrier Adjacent channel transmit power F = F0 2MHz(c) (d) Adjacent channel transmit power F = F0 3MHz(c) (d) f1avg Maximum Modulation f2max Minimum Modulation f2avg/f1avg Initial carrier frequency tolerance Drift Rate Drift (single slot packet) Drift (five slot packet)
(a) (b) (c) (d)
140 115 0.80 -75 -
-45 163 152 0.97 6 7 8 9
-40 175 75 20 25 40
-40 140dBm kHz kHz kHz kHz/50s kHz kHz
BlueCore4-External firmware maintains the transmit power to be within the Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measured at F0 = 2441MHz Three exceptions are allowed in Bluetooth v2.0+EDR specification
5.2.2
Receiver
VDD = 1.8V Frequency (GHz) 2.402 Min -20 Typ -87.0 -87.0 -89.0 10 Temperature = -40C Max -20 dBm -70 dBm Bluetooth Specification Unit
Radio Characteristics
Sensitivity at 0.1% BER for all packet types
2.441 2.480
Maximum received signal at 0.1% BER
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 33 of 116
Radio Characteristics - Basic Data Rate
5.3 5.3.1
Temperature -25C Transmitter
VDD = 1.8V Min Typ 5.8 35 0.5 790 -35 Temperature = -25C Max 1000 -20 Bluetooth Specification -6 to +4(b) 16 1000 -20 Unit dBm dB dB kHz dBm
Radio Characteristics
Maximum RF transmit power(a) RF power control range
www..com RF power range control resolution
25 -
_aiEceEQJbniEea~a= Product Data Sheet
20dB bandwidth for modulated carrier Adjacent channel transmit power F = F0 2MHz(c) (d) Adjacent channel transmit power F = F0 3MHz(c) (d) f1avg Maximum Modulation f2max Minimum Modulation f2avg/f1avg Initial carrier frequency tolerance Drift Rate Drift (single slot packet) Drift (five slot packet)
(a) (b) (c) (d)
140 115 0.80 -75 -
-45 163 154 0.98 6 7 8 9
-40 175 75 20 25 40
-40 140dBm kHz kHz kHz kHz/50s kHz kHz
BlueCore4-External firmware maintains the transmit power to be within the Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measured at F0 = 2441MHz Three exceptions are allowed in Bluetooth v2.0+EDR specification.
5.3.2
Receiver
VDD = 1.8V Frequency (GHz) 2.402 Min -20 Typ -86.5 -86.5 -88.0 10 Temperature = -25C Max -20 dBm -70 dBm Bluetooth Specification Unit
Radio Characteristics
Sensitivity at 0.1% BER for all packet types
2.441 2.480
Maximum received signal at 0.1% BER
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 34 of 116
Radio Characteristics - Basic Data Rate
5.4 5.4.1
Temperature +85C Transmitter
VDD = 1.8V Min Typ 3 35 0.5 790 -40 Temperature = +85C Max 1000 -20 Bluetooth Specification -6 to +4(b) 16 1000 -20 Unit dBm dB dB kHz dBm
Radio Characteristics
Maximum RF transmit power(a) RF power control range
www..com RF power range control resolution
25 -
_aiEceEQJbniEea~a= Product Data Sheet
20dB bandwidth for modulated carrier Adjacent channel transmit power F = F0 2MHz(c) (d) Adjacent channel transmit power F = F0 3MHz(c) (d) f1avg Maximum Modulation f2max Minimum Modulation f2avg/f1avg Initial carrier frequency tolerance Drift Rate Drift (single slot packet) Drift (five slot packet)
(a) (b) (c) (d)
140 115 0.80 -75 -
-45 163 150 0.97 6 7 8 9
-40 175 75 20 25 40
-40 140dBm kHz kHz kHz kHz/50s kHz kHz
BlueCore4-External firmware maintains the transmit power to be within the Bluetooth v2.0+EDR specification limits. Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measured at F0 = 2441MHz Three exceptions are allowed in Bluetooth v2.0+EDR specification
5.4.2
Receiver
VDD = 1.8V Frequency (GHz) 2.402 Min -20 Typ -82.5 -82.0 -84.0 10 Temperature = +85C Max -20 dBm -70 dBm Bluetooth Specification Unit
Radio Characteristics
Sensitivity at 0.1% BER for all packet types
2.441 2.480
Maximum received signal at 0.1% BER
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 35 of 116
Radio Characteristics - Basic Data Rate
5.5 5.5.1
Temperature +105C Transmitter
VDD = 1.8V Min Typ 1.5 35 0.5 790 -40 Temperature = +105C Max 1000 -20 Bluetooth Specification -6 to +4(b) 16 1000 -20 Unit dBm dB dB kHz dBm
Radio Characteristics
Maximum RF transmit power(a) RF power control range
www..com RF power range control resolution
25 -
_aiEceEQJbniEea~a= Product Data Sheet
20dB bandwidth for modulated carrier Adjacent channel transmit power F = F0 2MHz(c) (d) Adjacent channel transmit power F = F0 3MHz(c) (d) f1avg Maximum Modulation f2max Minimum Modulation f2avg/f1avg Initial carrier frequency tolerance Drift Rate Drift (single slot packet) Drift (five slot packet)
(a) (b) (c) (d)
140 115 0.80 -75 -
-45 163 148 0.97 12 7 8 9
-40 175 75 20 25 40
-40 140dBm kHz kHz kHz kHz/50s kHz kHz
BlueCore4-External firmware maintains the transmit power to be within the Bluetooth v2.0+EDR specification limits. Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measured at F0 = 2441MHz Three exceptions are allowed in the Bluetooth v2.0+EDR specification
5.5.2
Receiver
VDD = 1.8V Frequency (GHz) 2.402 Min -20 Typ -81.5 -81.0 -83.0 10 Temperature = +105C Max -20 dBm -70 dBm Bluetooth Specification Unit
Radio Characteristics
Sensitivity at 0.1% BER for all packet types
2.441 2.480
Maximum received signal at 0.1% BER
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 36 of 116
Radio Characteristics - Enhanced Data Rate
6
Radio Characteristics - Enhanced Data Rate
Results shown are referenced to the unbalanced port of the balun.
Important Note:
6.1 6.1.1
Temperature +20C Transmitter
VDD = 1.8V Temperature = +20C Min 99 Typ 1.5 -1.2 2 6 8 2 6 8 7 13 19 7 13 17 <-50 <-50 -46 -34 -35 -35 -31 -33 No Errors Max Bluetooth Specification -6 to +4(b) -4 to +1 10 for all blocks 75 for all blocks 75 for all blocks 10 for all blocks 75 for all blocks 75 for all blocks 20 30 35 13 20 25 -40 -40 -40 -20 -26 -26 -20 -40 99
Radio Characteristics
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Unit dBm dB kHz kHz kHz kHz kHz kHz % % % % % % dBm dBm dBm dBm dB dB dBm dBm %
Maximum RF transmit power(a) Relative transmit power(c)
/4 DQPSK max carrier frequency stability(c) w0 /4 DQPSK max carrier frequency stability(c) wi /4 DQPSK max carrier frequency stability(c) I w0+ wi I 8DPSK max carrier frequency stability(c) w0 8DPSK max carrier frequency stability(c) wi 8DPSK max carrier frequency stability(c) I w0+ wi I RMS DEVM /4 DQPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM RMS DEVM 8DPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM F>F0 +3MHz F(a) (b) (c) (d) (e)
BlueCore4-External firmware maintains transmit power within Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2 Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the frequency drift. Bluetooth specification values are for 8DPSK. Three exceptions are allowed in Bluetooth v2.0+EDR specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 37 of 116
Radio Characteristics - Enhanced Data Rate
6.1.2
Receiver
VDD = 1.8V Modulation Temperature = +20C Min Typ -87 -78 -8 -10 10 19 -10 -5 -11 -5 -40 -40 -23 -20 -45 -45 -45 -45 -20 -15 Max Bluetooth Specification -70 -70 -20 -20 +13 +21 0 +5 0 +5 -30 -25 -20 -13 -40 -33 -40 -33 -7 0 Unit dBm dBm dBm dBm dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB
Radio Characteristics
Sensitivity at 0.01% BER(a) Maximum received signal at 0.1% BER(a) C/I co-channel at 0.1% BER(a) Adjacent channel selectivity C/I F=F0+1MHz(a) (b) (c) Adjacent channel selectivity C/I F=F0-1MHz (a) (b) (c) Adjacent channel selectivity C/I F=F0+2MHz(a) (b) (c) Adjacent channel selectivity C/I F=F0-2MHz(a) (b) (c) Adjacent channel selectivity C/I FF0+3MHz(a) (b) (c) Adjacent channel selectivity C/I FF0-5MHz(a) (b) (c) Adjacent channel selectivity C/I F=FImage(a) (b) (c)
(a) (b) (c)
/4 DQPSK 8DPSK /4 DQPSK 8DPSK
_aiEceEQJbniEea~a= Product Data Sheet
www..com
/4 DQPSK 8DPSK /4 DQPSK 8DPSK /4 DQPSK 8DPSK /4 DQPSK 8DPSK /4 DQPSK 8DPSK /4 DQPSK 8DPSK /4 DQPSK 8DPSK /4 DQPSK 8DPSK
Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2 Up to five exceptions are allowed in EDR RF Test Specification v2.0.e.2. BlueCore4-External is guaranteed to meet the C/I performance as specified by the EDR RF Test Specification v2.0.e.2. Measured at F0 = 2405MHz, 2441MHz, 2477MHz
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 38 of 116
Radio Characteristics - Enhanced Data Rate
6.2 6.2.1
Temperature -40C Transmitter
VDD = 1.8V Temperature = -40C Min Typ 4 -1.2 2 7 8 3 7 9 7 14 19 6 12 18 <-50 <-50 -42 -25 -32 -33 -25 -30 No Errors Max Bluetooth Specification -6 to +4(b) -4 to +1 10 for all blocks 75 for all blocks 75 for all blocks 10 for all blocks 75 for all blocks 75 for all blocks 20 30 35 13 20 25 -40 -40 -40 -20 -26 -26 -20 -40 99 Unit dBm dB kHz kHz kHz kHz kHz kHz % % % % % % dBm dBm dBm dBm dB dB dBm dBm %
Radio Characteristics
Maximum RF transmit power(a) Relative transmit w0 /4 DQPSK max carrier frequency stability(c) wi /4 DQPSK max carrier frequency stability(c) I w0+wi I 8DPSK max carrier frequency stability(c) w0 8DPSK max carrier frequency stability(c) wi 8DPSK max carrier frequency stability(c) I w0+ wi I RMS DEVM /4 DQPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM RMS DEVM 8DPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM F>F0+3MHz F(a) (b) (c) (d) (e)
99
power(c)
_aiEceEQJbniEea~a= Product Data Sheet
www..com /4 DQPSK max carrier frequency stability(c)
BlueCore4-External firmware maintains transmit power within Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2 Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the frequency drift. The Bluetooth specification values are for 8DPSK. Up to three exceptions are allowed in the Bluetooth v2.0 + EDR specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 39 of 116
Radio Characteristics - Enhanced Data Rate
6.2.2
Receiver
VDD = 1.8V Modulation Temperature = -40C Min Typ -85 -78 -12 -15 Max Bluetooth Specification -70 -70 -20 -20 Unit dBm dBm dBm dBm
Radio Characteristics
Sensitivity at 0.01% BER(a) Maximum received signal at 0.1% BER(a)
www..com
(a)
/4 DQPSK 8DPSK /4 DQPSK 8DPSK
_aiEceEQJbniEea~a= Product Data Sheet
Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 40 of 116
Radio Characteristics - Enhanced Data Rate
6.3 6.3.1
Temperature -25C Transmitter
VDD = 1.8V Temperature = -25C Min Typ 3 -1.2 2 6 8 2 6 8 6 13 16 6 11 16 <-50 <-50 -43 -29 -32 -33 -27 -31 No Errors Max Bluetooth Specification -6 to +4(b) -4 to +1 10 for all blocks 75 for all blocks 75 for all blocks 10 for all blocks 75 for all blocks 75 for all blocks 20 30 35 13 20 25 -40 -40 -40 -20 -26 -26 -20 -40 99 Unit dBm dB kHz kHz kHz kHz kHz kHz % % % % % % dBm dBm dBm dBm dB dB dBm dBm %
Radio Characteristics
Maximum RF transmit power(a) Relative transmit w0 /4 DQPSK max carrier frequency stability(c) wi /4 DQPSK max carrier frequency stability(c) I w0+wi I 8DPSK max carrier frequency stability(c) w0 8DPSK max carrier frequency stability(c) wi 8DPSK max carrier frequency stability(c) I w0+ wi I RMS DEVM /4 DQPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM RMS DEVM 8DPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM F>F0+3MHz F(a) (b) (c) (d) (e)
99
power(c)
_aiEceEQJbniEea~a= Product Data Sheet
www..com /4 DQPSK max carrier frequency stability(c)
BlueCore4-External firmware maintains transmit power within Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2 Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the frequency drift. The Bluetooth specification values are for 8DPSK. Up to three exceptions are allowed in the Bluetooth v2.0 + EDR specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 41 of 116
Radio Characteristics - Enhanced Data Rate
6.3.2
Receiver
VDD = 1.8V Modulation Temperature = -25C Min Typ -85 -78 -12 -15 Max Bluetooth Specification -70 -70 -20 20 Unit dBm dBm dBm dBm
Radio Characteristics
Sensitivity at 0.01% BER(a) Maximum received signal at 0.1% BER(a)
www..com
(a)
/4 DQPSK 8DPSK /4 DQPSK 8DPSK
_aiEceEQJbniEea~a= Product Data Sheet
Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 42 of 116
Radio Characteristics - Enhanced Data Rate
6.4 6.4.1
Temperature +85C Transmitter
VDD = 1.8V Temperature = +85C Min Typ -2 -1.2 2 7 9 2 7 9 6 13 16 6 11 16 <-50 <-50 -43 -29 -32 -33 -27 -31 No Errors Max Bluetooth Specification -6 to +4(b) -4 to +1 10 for all blocks 75 for all blocks 75 for all blocks 10 for all blocks 75 for all blocks 75 for all blocks 20 30 35 13 20 25 -40 -40 -40 -20 -26 -26 -20 -40 99 Unit dBm dB kHz kHz kHZ kHZ kHZ kHZ % % % % % % dBm dBm dBm dBm dB dB dBm dBm %
Radio Characteristics
Maximum RF transmit power(a) Relative transmit w0 /4 DQPSK max carrier frequency stability(c) wi /4 DQPSK max carrier frequency stability(c) I w0+wi I 8DPSK max carrier frequency stability(c) w0 8DPSK max carrier frequency stability(c) wi 8DPSK max carrier frequency stability(c) I w0+ wi I RMS DEVM /4 DQPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM RMS DEVM 8DPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM F>F0+3MHz F(a) (b) (c) (d) (e)
99
power(c)
_aiEceEQJbniEea~a= Product Data Sheet
www..com /4 DQPSK max carrier frequency stability(c)
BlueCore4-External firmware maintains transmit power within Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2 Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the frequency drift. The Bluetooth specification values are for 8DPSK. Up to three exceptions are allowed in the Bluetooth v2.0 + EDR specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 43 of 116
Radio Characteristics - Enhanced Data Rate
6.4.2
Receiver
VDD = 1.8V Modulation Temperature = +85C Min Typ -83 -75 -5 -5 Max Bluetooth Specification -70 -70 -20 -20 Unit dBm dBm dBm dBm
Radio Characteristics
Sensitivity at 0.01% BER(a) Maximum received signal at 0.1% BER(a)
www..com
(a)
/4 DQPSK 8DPSK /4 DQPSK 8DPSK
_aiEceEQJbniEea~a= Product Data Sheet
Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 44 of 116
Radio Characteristics - Enhanced Data Rate
6.5 6.5.1
Temperature +105C Transmitter
VDD = 1.8V Temperature = +105C Min Typ -3 -1.3 1 7 8 1 7 8 7 12 16 7 12 15 <-50 <-50 -51 -45 -37 -32 -37 -38 No Errors Max Bluetooth Specification -6 to +4(b) -4 to +1 10 for all blocks 75 for all blocks 75 for all blocks 10 for all blocks 75 for all blocks 75 for all blocks 20 30 35 13 20 25 -40 -40 -40 -20 -26 -26 -20 -40 99 Unit dBm dB kHz kHz kHz kHz kHz kHz % % % % % % dBm dBm dBm dBm dB dB dBm dBm %
Radio Characteristics
Maximum RF transmit power(a) Relative transmit w0 /4 DQPSK max carrier frequency stability(c) wi /4 DQPSK max carrier frequency stability(c) I w0+wi I 8DPSK max carrier frequency stability(c) w0 8DPSK max carrier frequency stability(c) wi 8DPSK max carrier frequency stability(c) I w0+ wi I RMS DEVM /4 DQPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM RMS DEVM 8DPSK Modulation Accuracy(c) (d) 99% DEVM Peak DEVM F>F0+3MHz F(a) (b) (c) (d) (e)
99
power(c)
_aiEceEQJbniEea~a= Product Data Sheet
www..com /4 DQPSK max carrier frequency stability(c)
BlueCore4-External firmware maintains transmit power within Bluetooth v2.0+EDR specification limits Class 2 RF transmit power range, Bluetooth v2.0+EDR specification Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2 Modulation accuracy utilises differential error vector magnitude (DEVM) with tracking of the frequency drift. The Bluetooth specification values are for 8DPSK. Up to three exceptions are allowed in the Bluetooth v2.0 + EDR specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 45 of 116
Radio Characteristics - Enhanced Data Rate
6.5.2
Receiver
VDD = 1.8V Modulation Temperature = +105C Min Typ -85 -73 -5 -5 Max Bluetooth Specification -70 -70 -20 -20 Unit dBm dBm dBm dBm
Radio Characteristics
Sensitivity at 0.01% BER(a) Maximum received signal at 0.1% BER(a)
www..com
(a)
/4 DQPSK 8DPSK /4 DQPSK 8DPSK
_aiEceEQJbniEea~a= Product Data Sheet
Measurements methods are in accordance with the EDR RF Test Specification v2.0.e.2
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 46 of 116
7
www..com
TEST EN _
A[18:0] D[15:0]
VREG_IN VREG_ EN VDD USB _
XTAL_ OUT XTAL _IN
VDD_RADIO VDD _PADS VDD_ MEM VDD CORE _ VDD ANA _ RESETB WEB REB CSB
_aiEceEQJbniEea~a= Product Data Sheet
BC417143B-ds-001Pg
In En USB RAM USB_DN Clock Generation IQDEMOD LN A ATTENUATOR ADC Mem ory Managem ent Unit UART Demodulator B rst u Me od Co ntroller ExternalMem ory Driver Memory Mapped Control Status USB_DP Out VREG
Baseband and Logic
PIO[0]/RXEN
RX _IN
Synchronous Serial Interface
SPI_CSB SPI_CLK SPI_MOSI SPI_MISO UART_TX UART_RX UART_RTS UART_CTS PCM_OUT
Device Diagram
Ph ysical L ayer Hard ware En gine
RSSI ADC
RF Receiver
IQ M OD PA DAC
Audio PCM Interface
PCM_IN PCM_SYNC PCM_CLK
RF_A
RF_B
Microcontroller
VDD_PIO PIO[2] PIO[3]
RF Transmitter
+45 -45 Fref RISC Microcontroller Programmable I/O Tune Loop Filter /N/N+1 RF Synthesiser Interrupt Controller
PIO[4]/BT_Priority/Ch_Clk PIO[5]/BT_Active PIO[6]/WLAN_Active/Ch_Data PIO[7] PIO[8] PIO[9] PIO[10]
Figure 7.1: BlueCore4-External Device Diagram
Production Information (c) Cambridge Silicon Radio Limited 2005
RF Synthesiser
Event Timer AIO AIO [2] AIO [1] AIO 0 [] VSS_LO VSS _DIG VSS ANA _ VDD _LO VSS_RADIO
PIO[1]/TXEN
PIO[11]
Device Diagram
Page 47 of 116
Description of Functional Blocks
8
8.1
Description of Functional Blocks
RF Receiver
The receiver features a near-zero Intermediate Frequency (IF) architecture that allows the channel filters to be integrated onto the die. Sufficient out-of-band blocking specification at the Low Noise Amplifier (LNA) input allows the radio to be used in close proximity to Global System for Mobile Communications (GSM) and Wideband Code Division Multiple Access (W-CDMA) cellular phone transmitters without being desensitised. The use of a digital Frequency Shift Keying (FSK) discriminator means that no discriminator tank is needed and its excellent performance in the presence of noise allows BlueCore4-External to exceed the Bluetooth requirements for co-channel and adjacent channel rejection. For EDR, an ADC is used to digitise the IF received signal.
www..com
_aiEceEQJbniEea~a= Product Data Sheet
8.1.1
Low Noise Amplifier
The LNA can be configured to operate in single-ended or differential mode. Single-ended mode is used for Class 1 Bluetooth operation; differential mode is used for Class 2 operation.
8.1.2
Analogue to Digital Converter
The Analogue to Digital Converter (ADC) is used to implement fast Automatic Gain Control (AGC). The ADC samples the Received Signal Strength Indicator (RSSI) voltage on a slot-by-slot basis. The front-end LNA gain is changed according to the measured RSSI value, keeping the first mixer input signal within a limited range. This improves the dynamic range of the receiver, improving performance in interference limited environments.
8.2 8.2.1
RF Transmitter IQ Modulator
The transmitter features a direct IQ modulator to minimise the frequency drift during a transmit timeslot, which results in a controlled modulation index. Digital baseband transmit circuitry provides the required spectral shaping.
8.2.2
Power Amplifier
The internal Power Amplifier (PA) has a maximum output power of +6dBm. This allows BlueCore4-External to be used in Class 2 and Class 3 radios without an external RF PA. Support for transmit power control allows a simple implementation for Class 1 with an external RF PA.
8.3
RF Synthesiser
The radio synthesiser is fully integrated onto the die with no requirement for an external Voltage Controlled Oscillator (VCO) screening can, varactor tuning diodes, LC resonators or loop filter. The synthesiser is guaranteed to lock in sufficient time across the guaranteed temperature range to meet the Bluetooth v2.0 + EDR specification.
8.4
Clock Input and Generation
The reference clock for the system is generated from a TCXO or crystal input between 8MHz and 40MHz. All internal reference clocks are generated using a phase locked loop, which is locked to the external reference frequency.
8.5 8.5.1
Baseband and Logic Memory Management Unit
The Memory Management Unit (MMU) provides a number of dynamically allocated ring buffers that hold the data that is in transit between the host and the air. The dynamic allocation of memory ensures efficient use of the available Random Access Memory (RAM) and is performed by a hardware MMU to minimise the overheads on the processor during data/voice transfers.
8.5.2
Burst Mode Controller
During radio transmission the Burst Mode Controller (BMC) constructs a packet from header information previously loaded into memory-mapped registers by the software and payload data/voice taken from the appropriate ring buffer in the RAM. During radio reception, the BMC stores the packet header in memory-mapped registers and the payload data in the appropriate ring buffer in RAM. This architecture minimises the intervention required by the processor during transmission and reception.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 48 of 116
Description of Functional Blocks
8.5.3
Physical Layer Hardware Engine DSP
Forward error correction Header error control Cyclic redundancy check Encryption Data whitening Access code correlation Audio transcoding
Dedicated logic is used to perform the following:
_aiEceEQJbniEea~a= Product Data Sheet
www..com
The following voice data translations and operations are performed by firmware: A-law/-law/linear voice data (from host) A-law/-law/Continuously Variable Slope Delta (CVSD) (over the air) Voice interpolation for lost packets Rate mismatches
The hardware suports all optional and mandatory features of Bluetooth v2.0 + EDR including AFH and eSCO.
8.5.4
RAM (48Kbytes)
48Kbytes of on-chip RAM is provided to support the RISC MCU and is shared between the ring buffers used to hold voice/data for each active connection and the general purpose memory required by the Bluetooth stack.
8.5.5
External Memory Driver
The External Memory Driver interface can be used to connect to the external Flash memory and also to the optional external RAM for memory intensive applications.
8.5.6
USB
This is a full speed Universal Serial Bus (USB) interface for communicating with other compatible digital devices. BlueCore4-External acts as a USB peripheral, responding to requests from a master host controller such as a PC.
8.5.7
Synchronous Serial Interface
This is a synchronous serial port interface (SPI) for interfacing with other digital devices. The SPI port can be used for system debugging. It can also be used for programming the Flash memory.
8.5.8
UART
This is a standard Universal Asynchronous Receiver Transmitter (UART) interface for communicating with other serial devices.
8.6
Microcontroller
The microcontroller (MCU), interrupt controller and event timer run the Bluetooth software stack and control the radio and host interfaces. A 16-bit reduced instruction set computer (RISC) microcontroller is used for low power consumption and efficient use of memory.
8.6.1
Programmable I/O
BlueCore4-External has a total of 15 (12 digital and 3 analogue) programmable I/O terminals. These are controlled by firmware running on the device.
8.6.2
802.11 Co-Existence Interface
Dedicated hardware is provided to implement a variety of co-existence schemes. Channel skipping AFH, priority signalling, channel signalling and host passing of channel instructions are all supported. The features are configured in firmware. The details of some methods are proprietary (e.g., Intel WCS). Contact CSR for details.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 49 of 116
CSR Bluetooth Software Stacks
9
CSR Bluetooth Software Stacks
BlueCore4-External is supplied with Bluetooth v2.0 + EDR compliant stack firmware, which runs on the internal RISC microcontroller. The BlueCore4-External software architecture allows Bluetooth processing and the application program to be shared in different ways between the internal RISC microcontroller and an external host processor (if any). The upper layers of the Bluetooth stack (above HCI) can be run either on-chip or on the host processor.
9.1
BlueCore HCI Stack
_aiEceEQJbniEea~a= Product Data Sheet
External Flash
www..com
HCI LM LC
48KB RAM
Baseband MCU
USB Host UART Host I/O Radio
PCM I/O
Figure 9.1: BlueCore HCI Stack In the implementation shown in Figure 9.1 the internal processor runs the Bluetooth stack up to the Host Controller Interface (HCI). The Host processor must provide all upper layers including the application.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 50 of 116
CSR Bluetooth Software Stacks
9.1.1
Key Features of the HCI Stack: Standard Bluetooth Functionality
Adaptive frequency hopping (AFH), including classifier Faster connection - enhanced inquiry scan (immediate FHS response) LMP improvements Parameter ranges
Bluetooth v2.0 + EDR mandatory functionality:
Optional Bluetooth v2.0 + EDR functionality supported: Adaptive Frequency Hopping (AFH) as Master and Automatic Channel Classification Fast Connect - Interlaced Inquiry and Page Scan plus RSSI during Inquiry
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Extended SCO (eSCO), eV3 +CRC, eV4, eV5 SCO handle Synchronisation
The firmware was written against the Bluetooth v2.0 + EDR specification. Bluetooth components: Baseband (including LC) LM HCI Standard USB v1.1 and UART HCI Transport Layers All standard radio packet types Full Bluetooth data rate, enhanced data rates of 2 and 3Mbps(1) Operation with up to seven active slaves(1) Scatternet v2.5 operation Maximum number of simultaneous active ACL connections: 7(2) Maximum number of simultaneous active SCO connections: 3(2) Operation with up to three SCO links, routed to one or more slaves All standard SCO voice coding, plus transparent SCO Standard operating modes: Page, Inquiry, Page-Scan and Inquiry-Scan All standard pairing, authentication, link key and encryption operations Standard Bluetooth power saving mechanisms: Hold, Sniff and Park modes, including Forced Hold Dynamic control of peers' transmit power via LMP Master/Slave switch Broadcast Channel quality driven data rate All standard Bluetooth test modes The firmware's supported Bluetooth features are detailed in the standard Protocol Implementation Conformance Statement (PICS) documents, available from www.csr.com.
(1) (2)
This is the maximum allowed by Bluetooth v2.0 + EDR specification. BlueCore4-External supports all combinations of active ACL and SCO channels for both master and slave operation, as specified by the Bluetooth v2.0 + EDR specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 51 of 116
CSR Bluetooth Software Stacks
9.1.2
Key Features of the HCI Stack: Extra Functionality
Supports BlueCore Serial Protocol (BCSP), a proprietary, reliable alternative to the standard Bluetooth UART Host Transport Provides a set of approximately 50 manufacturer-specific HCI extension commands. This command set, called BlueCore Command (BCCMD), provides: Access to the chip's general-purpose PIO port The negotiated effective encryption key length on established Bluetooth links Access to the firmware's random number generator Controls to set the default and maximum transmit powers; these can help minimise interference between overlapping, fixed-location piconets Dynamic UART configuration Radio transmitter enable/disable. A simple command connects to a dedicated hardware switch that determines whether the radio can transmit. The firmware can read the voltage on a pair of the chip's external pins. This is normally used to build a battery monitor, using either VM or host code A block of BCCMD commands provides access to the chip's Persistent Store configuration database (PS). The database sets the device's Bluetooth address, Class of Device, radio (transmit class) configuration, SCO routing, LM, USB and DFU constants, etc. A UART break condition can be used in three ways: 1. 2. 3. Presenting a UART break condition to the chip can force the chip to perform a hardware reboot Presenting a break condition at boot time can hold the chip in a low power state, preventing normal initialisation while the condition exists With BCSP, the firmware can be configured to send a break to the host before sending data. (This is normally used to wake the host from a Deep Sleep state.)
The firmware extends the standard Bluetooth functionality with the following features:
_aiEceEQJbniEea~a= Product Data Sheet
www..com
The DFU standard has been extended with public/private key authentication, allowing manufacturers to control the firmware that can be loaded onto their Bluetooth modules A modified version of the DFU protocol allows firmware upgrade via the chip's UART A block of radio test or BIST commands allows direct control of the chip's radio. This aids the development of modules' radio designs, and can be used to support Bluetooth qualification. Virtual Machine (VM). The firmware provides the VM environment in which to run application-specific code. Although the VM is mainly used with BlueLab and RFCOMM builds (alternative firmware builds providing L2CAP, SDP and RFCOMM), the VM can be used with this build to perform simple tasks such as flashing LEDs via the chip's PIO port. Hardware low power modes: Shallow Sleep and Deep Sleep. The chip drops into modes that significantly reduce power consumption when the software goes idle. SCO channels are normally routed via HCI (over BCSP). However, up to three SCO channels can be routed over the chip's single PCM port (at the same time as routing any remaining SCO channels over HCI).
Note:
Always refer to the Firmware Release Note for the specific functionality of a particular build.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 52 of 116
CSR Bluetooth Software Stacks
9.2
BlueCore RFCOMM Stack
RFCOMM External Flash L2CAP HCI LM LC
SDP
_aiEceEQJbniEea~a= Product Data Sheet
www..com
48KB RAM
Baseband MCU
USB Host UART Host I/O Radio
PCM I/O
Figure 9.2: BlueCore RFCOMM Stack In the version of the firmware, shown in Figure 9.2 the upper layers of the Bluetooth stack up to RFCOMM are run on-chip. This reduces host-side software and hardware requirements at the expense of some of the power and flexibility of the HCI only stack.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 53 of 116
CSR Bluetooth Software Stacks
9.2.1
Key Features of the BlueCore4-External RFCOMM Stack
RFCOMM, an RS-232 serial cable emulation protocol SDP, a service database look-up protocol
Interfaces to Host:
Connectivity: Maximum number of active slaves: three Maximum number of simultaneous active ACL connections: three Maximum number of simultaneous active SCO connections: three Data Rate: up to 350kbps(1)
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Security: Full support for all Bluetooth security features up to and including strong (128-bit) encryption. Power Saving: Full support for all Bluetooth power saving modes (Park, Sniff and Hold). Data Integrity: CQDDR increases the effective data rate in noisy environments. RSSI used to minimise interference to other radio devices using the ISM band.
(1)
The data rate is with respect to BlueCore4-External with basic data rate packets.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 54 of 116
CSR Bluetooth Software Stacks
9.3
BlueCore Virtual Machine Stack
VM Application Software External Flash RFCOMM L2CAP HCI LM LC SDP
_aiEceEQJbniEea~a= Product Data Sheet
www..com
48KB RAM
Baseband MCU
USB Host (Optional) UART Host I/O Radio
PCM I/O
Figure 9.3: Virtual Machine In Figure 9.3, this version of the stack firmware shown requires no host processor (but it can use a host processor for debugging, etc.). All software layers, including application software, run on the internal RISC processor in a protected user software execution environment known as a Virtual Machine (VM). The user may write custom application code to run on the BlueCore VM using BlueLab SDK supplied with the BlueLab Multimedia and Casira development kits, available separately from CSR. This code will then execute alongside the main BlueCore firmware. The user is able to make calls to the BlueCore firmware for various operations. The execution environment is structured so the user application does not adversely affect the main software routines, thus ensuring that the Bluetooth stack software component does not need re-qualification when the application is changed. Using the VM and the BlueLab SDK the user is able to develop applications such as a cordless handsfree kit or other profiles without the requirement of a host controller. BlueLab is supplied with example code including a full implementation of the handsfree profile.
Note:
Sample applications to control PIO lines can also be written with BlueLab SDK and the VM for the HCI stack.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 55 of 116
CSR Bluetooth Software Stacks
9.4
BlueCore HID Stack
VM Application Software External Flash HID L2CAP HCI LM LC SDP
_aiEceEQJbniEea~a= Product Data Sheet
www..com
48KB RAM
Baseband MCU
Sensing Hardware (Optical Sensor etc.)
PIO/UART
HID I/O
Radio
Figure 9.4: HID Stack This version of the stack firmware requires no host processor. All software layers, including application software, run on the internal RISC microcontroller in a protected user software execution environment known as a virtual machine (VM). The user may write custom application code to run on the BlueCore VM using BlueLab Professional SDK supplied with the BlueLab Professional and Casira development kits, available separately from CSR. This code will then execute alongside the main BlueCore firmware. The user is able to make calls to the BlueCore firmware for various operations. The execution environment is structured so the user application does not adversely affect the main software routines, thus ensuring that the Bluetooth stack software component does not need re-qualification when the application is changed. Using the VM and the BlueLab Professional SDK the user is able to develop Bluetooth HID devices such as an optical mouse or keyboard. The user is able to customise features such as power management and connect/reconnect behaviour. The HID I/O component in the HID stack controls low latency data acquisition from external sensor hardware. With this component running in native code, it does not incur the overhead of the VM code interpreter. Supported external sensors include five mouse buttons, the Agilent ADNS-2030 optical sensor, quadrature scroll wheel, direct coupling to a keyboard matrix and a UART interface to custom hardware. A reference schematic for implementing a three button, optical mouse with scroll wheel is available from CSR.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 56 of 116
CSR Bluetooth Software Stacks
9.5
BCHS Software
BlueCore Embedded Host Software is designed to enable CSR customers to implement Bluetooth functionality into embedded products quickly, cheaply and with low risk. BCHS is developed to work with CSR's family of BlueCore ICs. BCHS is intended for embedded products that have a host processor for running BCHS and the Bluetooth application, e.g., a mobile phone or a PDA. BCHS together with the BlueCore IC with embedded Bluetooth core stack (L2CAP, RFCOMM and SDP) is a complete Bluetooth system solution from RF to profiles. BCHS includes most of the Bluetooth intelligence and gives the user a simple API. This makes it possible to develop a Bluetooth product without in-depth Bluetooth knowledge. The BlueCore Embedded Host Software contains three elements:
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Example Drivers (BCSP and proxies) Bluetooth Profile Managers Example Applications
The profiles are qualified which makes the qualification of the final product very easy. BCHS is delivered with source code (ANSI C). BCHS also comes with example applications in ANSI C, which makes the process of writing the application easier.
9.6
Additional Software for Other Embedded Applications
When the upper layers of the Bluetooth protocol stack are run as firmware on BlueCore4-External, a UART software driver is supplied that presents the L2CAP, RFCOMM and Service Discovery Protocol (SDP) APIs to higher Bluetooth stack layers running on the host. The code is provided as C source or object code.
9.7
CSR Development Systems
CSR's BlueLab Multimedia and Casira development kits are available to allow the evaluation of the BlueCore4-External hardware and software, and as toolkits for developing on-chip and host software.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 57 of 116
Enhanced Data Rate
10 Enhanced Data Rate
EDR has been introduced to provide 2x and 3x(1) data rates with minimal disruption to higher layers of the Bluetooth stack. BlueCore4-External supports both of the new data rates and is compliant with the Bluetooth v2.0+EDR specification.
10.1
Enhanced Data Rate Baseband
At the baseband level EDR utilises both the same 1.6kHz slot rate and the 1MHz symbol rate as defined for the basic data rate. Where EDR differs is that each symbol in the payload portion of a packet represents 2 or 3-bits. This is achieved using two new distinct modulation schemes. These are summarised in Table 10.1 and in Figure 10.1. Link Establishment and management are unchanged and still use GFSK for both the header and payload portions of these packets.
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Data Rate Scheme Basic Data Rate EDR EDR
Bits Per Symbol 1 2 3 Table 10.1: Data Rate Schemes
Modulation GFSK /4 DQPSK 8DPSK (optional)
Figure 10.1: Basic Rate and Enhanced Data Rate Packet Structure
10.2
Enhanced Data Rate /4 DQPSK
The 2x data rate for EDR utilises a /4-DQPSK. Each symbol represents two bits of information. Figure 10.2 shows the constellation. It is described as having two planes, each having four points. Although it would appear that there are eight possible phase states, the encoding ensures that the trajectory of the modulation between symbols is restricted to the four states in the other plane. For a given starting point, each phase change between symbols is restricted to +3/4, +/4, -/4 or -3/4 radians (+135, +45, -135 or -45). For example, the arrows shown in Figure 10.2 represents trajectory to the four possible states in the other plane.Table 10.2 shows the phase shift encoding of symbols. There are two primary advantages of utilising /4-DQPSK modulation: The scheme avoids the crossing of the origin (a + or - phase shift) and therefore minimises amplitude variations in the envelope of the transmitted signal. This in turn allows the RF power amplifiers of the transmitter to be operated closer to their compression point without introducing spectral distortions. Consequently, the DC to RF efficiency is maximised. The differential encoding also allows for the demodulation without the knowledge of an absolute value for the phase of the RF carrier.
(1)
The inclusion of 3x data rates is optional.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 58 of 116
Enhanced Data Rate
01
00
_aiEceEQJbniEea~a= Product Data Sheet
www..com
11
10
Figure 10.2: /4 DQPSK Constellation Pattern
Bit Pattern 00 01 11 10
Phase Shift /4 3/4 -3/4 -/4
Table 10.2: 2-Bits Determine Phase Shift Between Consecutive Symbols
10.3
Enhanced Data Rate 8DPSK
The 3x data rate modulation uses eight phase differential phase shift keying (8DPSK). Each symbol in the payload portion of the packet represents three baseband bits. Although it would appear that the 8DPSK is similar to /4 DQPSK, the differential phase shifts between symbols are now permissible between any of the eight possible phase states. This reduces the separation between adjacent symbols on the constellation to /4 (45) and thereby reduces the noise and interference immunity of the modulation scheme. Nevertheless, since each symbol now represents 3 baseband bits, the actual throughput of the data is 3x when compared with the basic rate packet. Figure 10.3 illustrates the 8DPSK constellation and Table 10.3 defines the phase encoding.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 59 of 116
Enhanced Data Rate
011 010 001
www..com
110
000
_aiEceEQJbniEea~a= Product Data Sheet
111 101
100
Figure 10.3: 8DPSK Constellation Pattern
Bit Pattern 000 001 011 010 110 111 101 100
Phase Shift 0 /4 /2 3/4 -3/4 -/2 -/4
Table 10.3: 3-Bits Determine Phase Shift Between Consecutive Symbols
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 60 of 116
Device Terminal Descriptions
11 Device Terminal Descriptions
11.1 RF Ports
The BlueCore4-External RF_IN terminal can be configured as either a single-ended or differential input. The operational mode is determined by setting the PS Key PSKEY_TXRX_PIO_CONTROL (0x20).
11.1.1 RF_A and RF_B
RF_A and RF_B form a complementary balanced pair. On transmit their outputs are combined using a balun into the single-ended output required for the antenna. Similarly, on receive their input signals are combined internally. Both terminals present similar complex impedances that require matching networks between them and the balun. Starting from the substrate (chip side), the outputs can each be modelled as an ideal current source in parallel with a lossy resistance and a capacitor. The bond wire can be represented as series inductance. www..com
_aiEceEQJbniEea~a= Product Data Sheet
BlueCore
_
PA
L2 1.5nH
+
RF Switch
RF_A
R2 10
0.9pF
L3 1.5nH
RF_B RF Switch
R3 10
+
LNA
_
0.9pF
Figure 11.1: Circuit TX/RF_A and TX/RF_B
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 61 of 116
Device Terminal Descriptions
11.1.2 Single-Ended Input (RX_IN)
This is the single-ended RF input from the antenna. The input presents a complex impedance that requires a matching network between the terminal and the antenna. Starting from the substrate (chip) side, the input can be modelled as a lossy capacitor with the bond wire to the ball grid represented as a series inductance. The terminal is DC blocked. The DC level must not exceed (VSS_RADIO -0.3V to VDD_RADIO + 0.3V).
BlueCore
_aiEceEQJbniEea~a= Product Data Sheet
www..com
L1 1.5nH R1 6.8 C1 0.68pF
RX_IN
Figure 11.2: Circuit RX_IN
Note:
Both terminals must be externally DC biased to VDD_RADIO
11.1.3 Transmit RF Power Control for Class 1 Applications (TX_PWR)
An 8-bit voltage DAC (AUX_DAC) is used to control the amplification level of the external PA for Class 1 operation. The DAC output is derived from the on-chip band gap and is virtually independent of temperature and supply voltage. The output voltage is given by:
CNTRL _ W ORD VDAC = MIN 3.3v x , (VDD _ PIO - 0.3 v ) 255
Equation 11.1: Output Voltage with Load Current 10mA for a load current 10mA (sourced from the device). or
CNTRL_ W ORD VDAC = MIN 3 .3 v x , VDD _ PIO 255
Equation 11.2: Output Voltage with No Load Current for no load current.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 62 of 116
Device Terminal Descriptions
BlueCore4-External enables the external PA only when transmitting. Before transmitting, the chip normally ramps up the power to the internal PA, then it ramps it down again afterwards. However, if a suitable external PA is used, it may be possible to ramp the power externally by driving the TX_PWR pin on the PA from AUX_DAC.
TX Power
tcarrier Modulation
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Equation 11.3: Internal Power Ramping
The Persistent Store Key (PS Key) PSKEY_TX_GAINRAMP (0x1d), is used to control the delay (in units of s) between the end of the transmit power ramp and the start of modulation. In this period the carrier is transmitted, which gives the transmit circuitry time to fully settle to the correct frequency. Bits[15:8] define a delay, tcarrier, (in units of s) between the end of the transmit power ramp and the start of modulation. In this period the carrier is transmitted, which aids interoperability with some other vendor equipment which is not strictly Bluetooth compliant.
11.1.4 Control of External RF Components
A PS Key TXRX_PIO_CONTROL (0x209) is used to control external RF components such as a switch, an external PA or an external LNA. PIO[0], PIO[1] and the AUX_DAC can be used for this purpose, as Table 11.1 indicates.
TXRX_PIO_CONTROL Value 0 1 2 3 4
AUX_DAC Use PIO[0], PIO[1], AUX_DAC not used to control RF. Power ramping is internal. PIO[0] is high during RX, PIO[1] is high during TX. AUX_DAC not used. Power ramping is internal. PIO[0] is high during RX, PIO[1] is high during TX. AUX_DAC used to set gain of external PA. Power ramping is external. PIO[0] is low during RX, PIO[1] is low during TX. AUX_DAC used to set gain of external PA. Power ramping is external. PIO[0] is high during RX, PIO[1] is high during TX. AUX_DAC used to set gain of external PA. Power ramping is internal. Table 11.1: TXRX_PIO_CONTROL Values
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 63 of 116
Device Terminal Descriptions
11.2
External Reference Clock Input (XTAL_IN)
The BlueCore4-External RF local oscillator and internal digital clocks are derived from the reference clock at the BlueCore4-External XTAL_IN input. This reference may be either an external clock or from a crystal connected between XTAL_IN and XTAL_OUT. The crystal mode is described in section 11.3.
11.2.1 External Mode
BlueCore4-External can be configured to accept an external reference clock from another device (such as TCXO) at XTAL_IN by connecting XTAL_OUT to ground. The external clock can be either a digital level square wave or sinusoidal, and this may be directly coupled to XTAL_IN without the need for additional components. If the peaks of the reference clock are below VSS_ANA or above VDD_ANA, it must be driven through a DC blocking capacitor (approximately 33pF) connected to XTAL_IN. A digital level reference clock gives superior noise immunity, as the high slew www..com rate clock edges have lower voltage to phase conversion. The external clock signal should meet the specifications in Table 11.2:
_aiEceEQJbniEea~a= Product Data Sheet
Min Frequency(a) Duty cycle Edge Jitter (At Zero Crossing) Signal Level 7.5MHz 20:80 400mV pk-pk
Typ 16MHz 50:50 -
Max 40MHz 80:20 15ps rms VDD_ANA(b) (c)
Table 11.2: External Clock Specifications
(a) (b) (c)
The frequency should be an integer multiple of 250kHz except for the CDMA/3G frequencies VDD_ANA is 1.8V nominal If the external clock is driven through a DC blocking capacitor, then maximum allowable amplitude is reduced from VDD_ANA to 800mV pk-pk.
11.2.2 XTAL_IN Impedance in External Mode
The impedance of the XTAL_IN will not change significantly between operating modes, typically 10fF. When transitioning from Deep Sleep to an active state a spike of up to 1pC may be measured. For this reason it is recommended that a buffered clock input be used.
11.2.3 Clock Timing Accuracy
As Figure 11.3 indicates, the 250ppm timing accuracy on the external clock is required 7ms after the assertion of the system clock request line. This is to guarantee that the firmware can maintain timing accuracy in accordance with the Bluetooth v2.0 + EDR specification. Radio activity may occur after 11ms, therefore, at this point the timing accuracy of the external clock source must be within 20ppm.
Figure 11.3: TCXO Clock Accuracy
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 64 of 116
Device Terminal Descriptions
11.2.4 Clock Start-Up Delay
BlueCore4-External hardware incorporates an automatic 5ms delay after the assertion of the system clock request signal before running firmware. This is suitable for most applications using an external clock source. However, there may be scenarios where the clock cannot be guaranteed to either exist or be stable after this period. Under these conditions, BlueCore4-External firmware provides a software function which will extend the system clock request signal by a period stored in PSKEY_CLOCK_STARTUP_DELAY. This value is set in milliseconds from 5-31ms. This PS Key allows the designer to optimise a system where clock latencies may be longer than 5ms while still keeping the current consumption of BlueCore4-External as low as possible. BlueCore4-External will consume about 2mA of current for the duration of PSKEY_CLOCK_STARTUP_DELAY before activating the firmware.
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Actual Allowable Clock Presence Delay on XTAL_IN vs. PSKey Setting
30.0
25.0
20.0
Delay (ms)
15.0
10.0
5.0
0.0 0.0 5.0 10.0 15.0 PSKEY_CLOCK_STARTUP_DELAY 20.0 25.0 30.0
Figure 11.4: Actual Allowable Clock Presence Delay on XTAL_IN vs. PS Key Setting
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 65 of 116
Device Terminal Descriptions
11.2.5 Input Frequencies and PS Key Settings
BlueCore4-External should be configured to operate with the chosen reference frequency. This is accomplished by setting the PS Key PSKEY_ANA_FREQ (0x1fe) for all frequencies with an integer multiple of 250kHz. The input frequency default setting in BlueCore4-External is 26MHz. The following CDMA/3G TCXO frequencies are also catered for: 7.68, 14.4, 15.36, 16.2, 16.8, 19.2, 19.44, 19.68, 19.8 and 38.4MHz.
Reference Crystal Frequency (MHz)
www..com
PSKEY_ANA_FREQ (0x1fe) (Units of 1kHz) 7680 14400 15360 16200 16800 19200 19440 19680 19800 38400 26000
_aiEceEQJbniEea~a= Product Data Sheet
7.68 14.40 15.36 16.20 16.80 19.20 19.44 19.68 19.80 38.40 n x 250kHz +26.00 Default
Table 11.3: PS Key Values for CDMA/3G Phone TCXO Frequencies
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 66 of 116
Device Terminal Descriptions
11.3
Crystal Oscillator (XTAL_IN, XTAL_OUT)
This section describes the crystal mode. See section 11.2 for the description of the external reference clock mode.
11.3.1 XTAL Mode
BlueCore4-External contains a crystal driver circuit. This operates with an external crystal and capacitors to form a Pierce oscillator.
gm
_aiEceEQJbniEea~a= Product Data Sheet
www..com
-
BlueCore
Ctrim
Cint
Ctrim
Ct2
Ct1
Figure 11.5: Crystal Driver Circuit Figure 11.6 shows an electrical equivalent circuit for a crystal. The crystal appears inductive near its resonant frequency. It forms a resonant circuit with its load capacitors.
Figure 11.6: Crystal Equivalent Circuit The resonant frequency may be trimmed with the crystal load capacitance. BlueCore4-External contains variable internal capacitors to provide a fine trim.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
XTAL_OUT
XTAL_IN
Page 67 of 116
Device Terminal Descriptions
Min Frequency Initial Tolerance Pullability 8MHz -
Typ 16MHz 25ppm 20ppm/pF Table 11.4: Crystal Specification
Max 32MHz -
The BlueCore4-External driver circuit is a transconductance amplifier. A voltage at XTAL_IN generates a current at XTAL_OUT. The value of transconductance is variable and may be set for optimum performance.
_aiEceEQJbniEea~a= Product Data Sheet
www..com 11.3.2
Load Capacitance
For resonance at the correct frequency the crystal should be loaded with its specified load capacitance, which is defined for the crystal. This is the total capacitance across the crystal viewed from its terminals. BlueCore4-External provides some of this load with the capacitors Ctrim and Cint. The remainder should be from the external capacitors labelled Ct1 and Ct2. Ct1 should be three times the value of Ct2 for best noise performance. This maximises the signal swing, hence, slew rate at XTAL_IN (to which all on-chip clocks are referred). Crystal load capacitance, Cl is calculated with Equation 11.4:
CI = Cint +
C trim CC + t1* t 2 2 C t1 + C t 2
Equation 11.4: Load Capacitance
Where:
Ctrim = 3.4pF nominal (mid-range setting) Cint = 1.5pF
Note:
Cint does not include the crystal internal self capacitance; it is the driver self capacitance.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 68 of 116
Device Terminal Descriptions
11.3.3 Frequency Trim
BlueCore4-External enables frequency adjustments to be made. This feature is typically used to remove initial tolerance frequency errors associated with the crystal. Frequency trim is achieved by adjusting the crystal load capacitance with on-chip trim capacitors, Ctrim. The value of Ctrim is set by a 6-bit word in the PS Key PSKEY_ANA_FTRIM (0x1f6). Its value is calculated thus:
C trim = 110fF x PSKEY _ AN A _ FT R IM
Equation 11.5: Trim Capacitance
_aiEceEQJbniEea~a= Product Data Sheet
www..com are two C There trim capacitors, which are both connected to ground. When viewed from the crystal terminals, they
appear in series so each least significant bit (LSB) increment of frequency trim presents a load across the crystal of 55fF. The frequency trim is described by Equation 11.6.
(FX ) = pullabilit x 55 x 10-3 (ppm / LSB) y FX
Equation 11.6: Frequency Trim Where Fx is the crystal frequency and pullability is a crystal parameter with units of ppm/pF. Total trim range is 63 times the value above. If not specified, the pullability of a crystal may be calculated from its motional capacitance with Equation 11.7.
Cm (FX ) = FX* (FX ) 4(CI + C0 )2
Equation 11.7: Pullability
Where:
C0 = Crystal self capacitance (shunt capacitance) Cm = Crystal motional capacitance (series branch capacitance in crystal model). See Figure 11.6.
Note:
It is a Bluetooth requirement that the frequency is always within 20ppm. The trim range should be sufficient to pull the crystal within 5ppm of the exact frequency. This leaves a margin of 15ppm for frequency drift with ageing and temperature. A crystal with an ageing and temperature drift specification of better than 15ppm is required.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 69 of 116
Device Terminal Descriptions
11.3.4 Transconductance Driver Model
The crystal and its load capacitors should be viewed as a transimpedance element, whereby a current applied to one terminal generates a voltage at the other. The transconductance amplifier in BlueCore4-External uses the voltage at its input, XTAL_IN, to generate a current at its output, XTAL_OUT. Therefore, the circuit will oscillate if the transconductance, transimpedance product is greater than unity. For sufficient oscillation amplitude, the product should be greater than three. The transconductance required for oscillation is defined by the relationship shown in Equation 11.8:
gm >
www..com
3(C t1 + C trim )(C t 2 + C trim ) (2FX )2 Rm ((C0 + Cint )(C t1 + Ct 2 + 2Ctrim ) + (Ct1 + Ctrim )(Ct 2 + Ctrim ))2
_aiEceEQJbniEea~a= Product Data Sheet
Equation 11.8: Transconductance Required for Oscillation BlueCore4-External guarantees a transconductance value of at least 2mA/V at maximum drive level.
Notes:
More drive strength is required for higher frequency crystals, higher loss crystals (larger Rm) or higher capacitance loading. Optimum drive level is attained when the level at XTAL_IN is approximately 1V pk-pk. The drive level is determined by the crystal driver transconductance, by setting the PS Key PSKEY_XTAL_LVL (0x241).
11.3.5 Negative Resistance Model
An alternative representation of the crystal and its load capacitors is a frequency dependent resistive element. The driver amplifier may be considered as a circuit that provides negative resistance. For oscillation, the value of the negative resistance must be greater than that of the crystal circuit equivalent resistance. Although the BlueCore4-External crystal driver circuit is based on a transimpedance amplifier, an equivalent negative resistance may be calculated for it with the following formula in Equation 11.9:
Rneg >
gm (2FX ) (C0 + Cint )((C t1 + C t 2 + 2C trim ) + (C t1 + C trim )(C t 2 + C trim ))2
2
3(C t1 + Ctrim )(C t 2 + C trim )
Equation 11.9: Equivalent Negative Resistance This formula shows the negative resistance of the BlueCore4-External driver as a function of its drive strength. The value of the driver negative resistance may be easily measured by placing an additional resistance in series with the crystal. The maximum value of this resistor (oscillation occurs) is the equivalent negative resistance of the oscillator.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 70 of 116
Device Terminal Descriptions
11.3.6 Crystal PS Key Settings
See tables in section 11.2.5.
11.3.7 Crystal Oscillator Characteristics
Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency
1000.0
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Max Xtal Rm Value (ESR), (Ohm)
100.0
10.0 2.5 3.5 4.5 5.5 6.5 7.5 Load Capacitance (pF) 8.5 9.5 10.5 11.5 12.5
8 MHz 20 MHz 32 MHz
12 MHz 24 MHz
16 MHz 28 MHz
Figure 11.7: Crystal Load Capacitance and Series Resistance Limits with Crystal Frequency
Note:
Graph shows results for BlueCore4-External crystal driver at maximum drive level.
Conditions:
Ctrim = 3.4pF centre value Crystal Co = 2pF Transconductance setting = 2mA/V Loop gain = 3 Ct1/Ct2 = 3
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 71 of 116
Device Terminal Descriptions
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 11.8: Crystal Driver Transconductance vs. Driver Level Register Setting
Note:
Drive level is set by PS Key PSKEY_XTAL_LVL (0x241).
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 72 of 116
Device Terminal Descriptions
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 11.9: Crystal Driver Negative Resistance as a Function of Drive Level Setting
Crystal parameters:
Crystal frequency 16MHz (refer to your software build release note for supported frequencies ). Crystal C0 = 0.75pF
Circuit parameters:
Ctrim = 8pF, maximum value Ct1,Ct2 = 5pF (3.9pF plus 1.1 pF stray) (Crystal total load capacitance 8.5pF)
Note:
This is for a specific crystal and load capacitance.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 73 of 116
Device Terminal Descriptions
11.4
Off-Chip Program Memory
The external memory port provides a facility to interface up to 8Mbits of 16 bit external memory. This off chip storage is used to store BlueCore4-External settings and program code. Flash is the storage mechanism typically used by BlueCore4-External modules, however external masked ROM may also be used if the host takes over responsibility for storing configuration data. The external memory port consists of 16 bi-directional data lines, D[15:0]; 19 output address lines, A[18:0] and three active low output control signals (WEB, CEB, REB). WEB is asserted when data is written to external memory. REB is asserted when data is read from external memory and the chip select line. CSB is asserted when any data transfer (read or write) is required. All of the external memory port connections are implemented using CMOS technology and use standard 0V and VDD_MEM (1.8-3.6V) signalling levels.
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Parameter Data width Minimum total capacity Maximum access time
Value 16-bit 4Mbit (256kWord) 90ns @125C 50pF load 110ns @85C 10pF load Table 11.5: Flash Device Hardware Requirements
In addition to these hardware requirements, particular care should be taken to ensure that the sector organisation of the extended memory has the correct format. A sector is defined as an individually erasable area of external Flash. It is important to make sure that external memory devices meet certain minimum specifications. In addition particular care should be taken to ensure that the sector organisation of the extended memory has the correct format.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 74 of 116
Device Terminal Descriptions
11.4.1 Minimum Flash Specification
The flash device used with BlueCore4-External must meet the following criteria: Either standard or extended form of the JEDEC (AMD/Fujitsu/SST) or Intel command set. Access time must be 90ns @125C 50pF load or 110ns @85C 10pF load. Write strobe of 100ns. Accessible in word mode, i.e., via a 16-bit data bus. Support changing different bits within each word from 1 to 0 in at least two separate programming operations. Programming and erase times must have fixed upper limits. Must be bottom boot or uniform sector.
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Must have independently erasable sectors with at least the following boundaries. See Memory Map for more information.
Word Address 0x00000 - 0x01FFF 0x02000 - 0x02FFF 0x03000 - 0x03FFF 0x04000 - 0x07FFF 0x08000 - 0x0FFFF 0x10000 - 0x17FFF 0x18000 - ... Table 11.6: Flash Sector Boundaries
Important Note:
Size (kWords) 8 4 4 16 32 32 Don't care
Satisfaction of these criteria is not sufficient for a particular device to be used; it must also support the Common Flash Interface described in section 11.4.2 or be supported in the BlueCore4-External firmware and host-side tools.
11.4.2 Common Flash Interface
The firmware can adapt automatically to work with some flash devices. If in addition to satisfying the minimum Flash specification described above, they meet the following criteria: The device must support the Common Flash Interface, as defined by JEDEC standard JESD68. The device must return one of the following codes for either the Primary or Alternative Algorithm Command Set (offset 0x13b or 0x17 of the Query Structure Output):
Code 0x0001 0x0002 0x0003 0x0701
Description Intel/Sharp Extended Command Set AMD/Fujitsu Standard Command Set Intel Standard Command Set AMD/Fujitsu Extended Command Set Table 11.7: Common Flash Interface Algorithm Command Set Codes
The device must return one of the following patterns of Erase Block Region Information (beginning at offset 0x2d of the Query Structure Output). If any of these criteria is not met, then the device will not work unless the device is supported by the BlueCore4-External firmware.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 75 of 116
Device Terminal Descriptions
11.4.3 Memory Timing
Memory Write Cycle
Symbol twc tdat:su tdat:hd
www..com t
addr:su
Parameter Write cycle time Data set-up time Data hold time Address set-up time WEB low
Minimum(a) 300 150 150 150 100
Typical -
Maximum(a) -
Unit ns ns ns ns ns
_aiEceEQJbniEea~a= Product Data Sheet
twe:low
(a)
Table 11.8: Memory Write Cycle
Valid for temperatures between -40C and +105C
Figure 11.10: Memory Write Cycle
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 76 of 116
Device Terminal Descriptions
Memory Read Cycle
Symbol trc taa tre
dat:hd www..com
Parameter Read cycle time Address access time Read enable access time Data hold time from address line
Minimum(a) 114 0
Typical 125 -
Maximum(a) 110 110 -
Unit ns ns ns
_aiEceEQJbniEea~a= Product Data Sheet
t
ns
Table 11.9: Memory Read Cycle
(a)
Valid for temperatures between -40C and +105C
Figure 11.11: Memory Read Cycle
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 77 of 116
Device Terminal Descriptions
11.5
UART Interface
BlueCore4-External UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol.(1)
BlueCore
UART_TX
_aiEceEQJbniEea~a= Product Data Sheet
www..com
UART_RX UART_RTS UART_CTS
Figure 11.12: Universal Asynchronous Receiver Four signals are used to implement the UART function, as shown in Figure 11.12. When BlueCore4-External is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All UART connections are implemented using CMOS technology and have signalling levels of 0V and VDD_USB. UART configuration parameters, such as baud rate and packet format, are set using BlueCore4-External software.
Note:
In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC.
Parameter Minimum Maximum Flow Control Parity Number of Stop Bits Bits per Channel Table 11.10: Possible UART Settings
Possible Values 1200 baud (2%Error) 9600 baud (1%Error) 3M baud (1%Error) RTS/CTS or None None, Odd or Even 1 or 2 8
Baud Rate
(1)
Uses RS232 protocol, but voltage levels are 0V to VDD_USB (requires external RS232 transceiver chip).
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 78 of 116
Device Terminal Descriptions
The UART interface is capable of resetting BlueCore4-External upon reception of a break signal. A break is identified by a continuous logic low (0V) on the UART_RX terminal, as shown in Figure 11.13. If tBRK is longer than the value, defined by the PS Key PSKEY_HOST_IO_UART_RESET_TIMEOUT, (0x1a4), a reset will occur. This feature allows a host to initialise the system to a known state. Also, BlueCore4-External can emit a break character that may be used to wake the host.
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Note:
Figure 11.13: Break Signal
The DFU boot loader must be loaded into the Flash device before the UART or USB interfaces can be used. This initial flash programming can be done via the SPI. Table 11.11 shows a list of commonly used baud rates and their associated values for the PS Key PSKEY_UART_BAUD_RATE (0x204). There is no requirement to use these standard values. Any baud rate within the supported range can be set in the PS Key according to the formula in Equation 11.10.
Baud Rate =
PSKEY _ UART _ BAUD_ RATE 0.004096
Equation 11.10: Baud Rate
Baud Rate 1200 2400 4800 9600 19200 38400 57600 76800 115200 230400 460800 921600 1382400 1843200 2764800
Persistent Store Value Hex 0x0005 0x000a 0x0014 0x0027 0x004f 0x009d 0x00ec 0x013b 0x01d8 0x03b0 0x075f 0x0ebf 0x161e 0x1d7e 0x2c3d Dec 5 10 20 39 79 157 236 315 472 944 1887 3775 5662 7550 11325
Error 1.73% 1.73% 1.73% -0.82% 0.45% -0.18% 0.03% 0.14% 0.03% 0.03% -0.02% 0.00% -0.01% 0.00% 0.00%
Table 11.11: Standard Baud Rates
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 79 of 116
Device Terminal Descriptions
11.5.1 UART Bypass
Host Processor
RESET RXD CTS RTS TXD UART_TX UART_RTS UART_CTS UART_RX
BlueCore
Another Device
PIO4 PIO5 PIO6 PIO7
TX RTS CTS RX
_aiEceEQJbniEea~a= Product Data Sheet
UART
www..com
Test Interface
Figure 11.14: UART Bypass Architecture
11.5.2 UART Configuration While RESET is Active
The UART interface for BlueCore4-External while the chip is being held in reset is tri-state. This will allow the user to daisy chain devices onto the physical UART bus. The constraint on this method is that any devices connected to this bus must tri-state when BlueCore4-External reset is de-asserted and the firmware begins to run.
11.5.3 UART Bypass Mode
Alternatively, for devices that do not tri-state the UART bus, the UART bypass mode on BlueCore4-External can be used. The default state of BlueCore4-External after reset is de-asserted; this is for the host UART bus to be connected to the BlueCore4-External UART, thereby allowing communication to BlueCore4-External via the UART. All UART bypass mode connections are implemented using CMOS technology and have signalling levels of 0V and VDD_PADS.(1) In order to apply the UART bypass mode, a BCCMD command will be issued to BlueCore4-External. Upon this issue, it will switch the bypass to PIO[7:4] as Figure 11.14 indicates. Once the bypass mode has been invoked, BlueCore4-External will enter the Deep Sleep state indefinitely. In order to re-establish communication with BlueCore4-External, the chip must be reset so that the default configuration takes effect. It is important for the host to ensure a clean Bluetooth disconnection of any active links before the bypass mode is invoked. Therefore, it is not possible to have active Bluetooth links while operating the bypass mode.
11.5.4 Current Consumption in UART Bypass Mode
The current consumption for a device in UART bypass mode is equal to the values quoted for a device in standby mode.
(1)
The range of the signalling level for the standard UART described in section 11.5 and the UART bypass may differ between CSR BlueCore devices, as the power supply configurations are chip dependent. For BlueCore4-External, the standard UART is supplied by VDD_USB, so has signalling levels of 0V and VDD_USB. Whereas in the UART bypass mode, the signals appear on PIO[4:7] which are supplied by VDD_PADS, therefore the signalling levels are 0V and VDD_PADS.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 80 of 116
Device Terminal Descriptions
11.6
USB Interface
BlueCore4-External devices contain a full speed (12Mbits/s) USB interface that is capable of driving a USB cable directly. No external USB transceiver is required. The device operates as a USB peripheral, responding to requests from a master host controller such as a PC. Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented can behave as specified in the USB section of the Bluetooth specification v2.0+EDR or alternatively can appear as a set of endpoints appropriate to USB audio devices such as speakers. As USB is a master/slave oriented system (in common with other USB peripherals), BlueCore4-External only supports USB Slave operation.
11.6.1 USB Data Connections
www..com buffers of the BlueCore4-External, therefore, have a low output impedance. To match the connection to the
The USB data lines emerge as pins USB_DP and USB_DN. These terminals are connected to the internal USB I/O characteristic impedance of the USB cable, resistors must be placed in series with USB_DP/USB_DN and the cable.
_aiEceEQJbniEea~a= Product Data Sheet
11.6.2 USB Pull-Up Resistor
BlueCore4-External features an internal USB pull-up resistor. This pulls the USB_DP pin weakly high when BlueCore4-External is ready to enumerate. It signals to the PC that it is a full speed (12Mbit/s) USB device. The USB internal pull-up is implemented as a current source, and is compliant with section 7.1.5 of the USB specification v1.2. The internal pull-up pulls USB_DP high to at least 2.8V when loaded with a 15k 5% pull-down resistor (in the hub/host) when VDD_PADS=3.1V. This presents a Thevenin resistance to the host of at least 900. Alternatively, an external 1.5k pull-up resistor can be placed between a PIO line and D+ on the USB cable. The firmware must be alerted to which mode is used by setting PS Key PSKEY_USB_PIO_PULLUP appropriately. The default setting uses the internal pull-up resistor.
11.6.3 Power Supply
The USB specification dictates that the minimum output high voltage for USB data lines is 2.8V. To safely meet the USB specification, the voltage on the VDD_USB supply terminals must be an absolute minimum of 3.1V. CSR recommends 3.3V for optimal USB signal quality.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 81 of 116
Device Terminal Descriptions
11.6.4 Self-Powered Mode
In self-powered mode, the circuit is powered from its own power supply and not from the VBUS (5V) line of the USB cable. It draws only a small leakage current (below 0.5mA) from VBUS on the USB cable. This is the easier mode for which to design, as the design is not limited by the power that can be drawn from the USB hub or root port. However, it requires that VBUS be connected to BlueCore4-External via a resistor network (Rvb1 and Rvb2), so BlueCore4-External can detect when VBUS is powered up. BlueCore4-External will not pull USB_DP high when VBUS is off. Self-powered USB designs (powered from a battery or PSU) must ensure that a PIO line is allocated for USB pull-up purposes. A 1.5K 5% pull-up resistor between USB_DP and the selected PIO line should be fitted to the design. Failure to fit this resistor may result in the design failing to be USB compliant in self-powered mode. The internal pull-up in BlueCore is only suitable for bus-powered USB devices, e.g., dongles.
www..com
_aiEceEQJbniEea~a= Product Data Sheet
BlueCore
PIO USB_DP USB_DN USB_ON
1.5K 5% Rs Rs Rvb1
D+ DVBUS
Rvb2
GND
Figure 11.15: USB Connections for Self-Powered Mode The terminal marked USB_ON can be any free PIO pin. The PIO pin selected must be registered by setting PSKEY_USB_PIO_VBUS to the corresponding pin number.
Note:
USB_ON is shared with BlueCore4-External PIO terminals.
Identifier Rs Rvb1 Rvb2
Value 27 nominal 22k 5% 47k 5%
Function Impedance matching to USB cable VBUS ON sense divider VBUS ON sense divider
Table 11.12: USB Interface Component Values
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 82 of 116
Device Terminal Descriptions
11.6.5 Bus-Powered Mode
In bus-powered mode, the application circuit draws its current from the 5V VBUS supply on the USB cable. BlueCore4-External negotiates with the PC during the USB enumeration stage about how much current it is allowed to consume. For Class 2 Bluetooth applications, CSR recommends that the regulator used to derive 3.3V from VBUS is rated at 100mA average current and should be able to handle peaks of 120mA without foldback or limiting. In bus-powered mode, BlueCore4-External requests 100mA during enumeration. For Class 1 Bluetooth applications, the USB power descriptor should be altered to reflect the amount of power required. This is accomplished by setting the PS Key PSKEY_USB_MAX_POWER (0x2c6). This is higher than for a Class 2 application due to the extra current drawn by the Transmit RF PA.
_aiEceEQJbniEea~a= Product Data Sheet
www..com selecting a regulator, be aware that VBUS may go as low as 4.4V. The inrush current (when charging reservoir When
and supply decoupling capacitors) is limited by the USB specification. See USB Specification v1.1, section 7.2.4.1. Some applications may require soft start circuitry to limit inrush current if more than 10F is present between VBUS and GND. The 5V VBUS line emerging from a PC is often electrically noisy. As well as regulation down to 3.3V and 1.8V, applications should include careful filtering of the 5V line to attenuate noise that is above the voltage regulator bandwidth. Excessive noise on the 1.8V supply to the analogue supply pins of BlueCore4-External will result in reduced receive sensitivity and a distorted RF transmit signal.
BlueCore
USB_DP USB_DN USB_ON
Rs Rs Rvb1
D+ DVBUS
GND
Voltage Regulator
Figure 11.16: USB Connections for Bus-Powered Mode
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 83 of 116
Device Terminal Descriptions
11.6.6 Suspend Current
All USB devices must permit the USB controller to place them in a USB suspend mode. While in USB Suspend, bus-powered devices must not draw more than 0.5mA from USB VBUS (self-powered devices may draw more than 0.5mA from their own supply). This current draw requirement prevents operation of the radio by bus-powered devices during USB Suspend. The voltage regulator circuit itself should draw only a small quiescent current (typically less than 100A) to ensure adherence to the suspend current requirement of the USB specification. This is not normally a problem with modern regulators. Ensure that external LEDs and/or amplifiers can be turned off by BlueCore4-External. The entire circuit must be able to enter the suspend mode. Refer to separate CSR documentation for more details on USB Suspend.
11.6.7 Detach and Wake_Up Signalling
www..com BlueCore4-External can provide out-of-band signalling to a host controller by using the control lines called
_aiEceEQJbniEea~a= Product Data Sheet
USB_DETACH and USB_WAKE_UP. These are outside the USB specification (no wires exist for them inside the USB cable), but can be useful when embedding BlueCore4-External into a circuit where no external USB is visible to the user. Both control lines are shared with PIO pins and can be assigned to any PIO pin by setting the PS Keys PSKEY_USB_PIO_DETACH and PSKEY_USB_PIO_WAKEUP to the selected PIO number. USB_DETACH is an input which, when asserted high, causes BlueCore4-External to put USB_DN and USB_DP in a high impedance state and turns off the pull-up resistor on DP. This detaches the device from the bus and is logically equivalent to unplugging the device. When USB_DETACH is taken low, BlueCore4-External will connect back to USB and await enumeration by the USB host. USB_WAKE_UP is an active high output (used only when USB_DETACH is active) to wake up the host and allow USB communication to recommence. It replaces the function of the software USB WAKE_UP message (which runs over the USB cable) and cannot be sent while BlueCore4-External is effectively disconnected from the bus.
Figure 11.17: USB_DETACH and USB_WAKE_UP Signal
11.6.8 USB Driver
A USB Bluetooth device driver is required to provide a software interface between BlueCore4-External and Bluetooth software running on the host computer. Suitable drivers are available from http://www.csrsupport.com.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 84 of 116
Device Terminal Descriptions
11.6.9 USB 1.1 Compliance
BlueCore4-External is qualified to the USB Specification v1.1, details of which are available from www.usb.org. The specification contains valuable information on aspects such as PCB track impedance, supply inrush current and product labelling. Although BlueCore4-External meets the USB specification, CSR cannot guarantee that an application circuit designed around the chip is USB compliant. The choice of application circuit, component choice and PCB layout all affect USB signal quality and electrical characteristics. The information in this document is intended as a guide and should be read in association with the USB specification, with particular attention being given to Chapter 7. Independent USB qualification must be sought before an application is deemed USB compliant and can bear the USB logo. Such qualification can be obtained from a USB plugfest or from an independent USB test house.
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Terminals USB_DP and USB_DN adhere to the USB specification v2.0 (Chapter 7) electrical requirements.
11.6.10 USB 2.0 Compatibility
BlueCore4-External is compatible with USB v2.0 host controllers; under these circumstances the two ends agree the mutually acceptable rate of 12Mbits/s according to the USB v2.0 specification.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 85 of 116
Device Terminal Descriptions
11.7
Serial Peripheral Interface
BlueCore4-External uses 16-bit data and 16-bit address serial peripheral interface, where transactions may occur when the internal processor is running or is stopped. This section details the considerations required when interfacing to BlueCore4-External via the four dedicated serial peripheral interface terminals. Data may be written or read one word at a time or the auto increment feature may be used to access blocks.
11.7.1 Instruction Cycle
The BlueCore4-External is the slave and receives commands on SPI_MOSI and outputs data on SPI_MISO. Table 11.13 shows the instruction cycle for an SPI transaction.
_aiEceEQJbniEea~a= Product Data Sheet
www..com 1
Reset the SPI interface Write the command word Write the address Write or read data words Termination
Hold SPI_CSB high for two SPI_CLK cycles Take SPI_CSB low and clock in the 8 bit command Clock in the 16-bit address word Clock in or out 16-bit data word(s) Take SPI_CSB high
2 3 4 5
Table 11.13: Instruction Cycle for an SPI Transaction With the exception of reset, SPI_CSB must be held low during the transaction. Data on SPI_MOSI is clocked into the BlueCore4-External on the rising edge of the clock line SPI_CLK. When reading, BlueCore4-External will reply to the master on SPI_MISO with the data changing on the falling edge of the SPI_CLK. The master provides the clock on SPI_CLK. The transaction is teminated by taking SPI_CSB high. Sending a command word and the address of a register for every time it is to be read or written is a significant overhead, especially when large amounts of data are to be transferred. To overcome this BlueCore4-External offers increased data transfer efficiency via an auto increment operation. To invoke auto increment, SPI_CSB is kept low, which auto increments the address, while providing an extra 16 clock cycles for each extra word to be written or read.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 86 of 116
Device Terminal Descriptions
11.7.2 Writing to BlueCore4-External
To write to BlueCore4-External, the 8-bit write command (00000010) is sent first (C[7:0]) followed by a 16-bit address (A[15:0]). The next 16-bits (D[15:0]) clocked in on SPI_MOSI are written to the location set by the address (A). Thereafter for each subsequent 16-bits clocked in, the address (A) is incremented and the data written to consecutive locations until the transaction terminates when SPI_CSB is taken high.
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 11.18: Write Operation
11.7.3 Reading from BlueCore4-External
Reading from BlueCore4-External is similar to writing to it. An 8-bit read command (00000011) is sent first (C[7:0]), followed by the address of the location to be read (A[15:0]). BlueCore4-External then outputs on SPI_MISO a check word during T[15:0] followed by the 16-bit contents of the addressed location during bits D[15:0]. The check word is composed of {command, address [15:8]}. The check word may be used to confirm a read operation to a memory location. This overcomes the problems encountered with typical serial peripheral interface slaves, whereby it is impossible to determine whether the data returned by a read operation is valid data or the result of the slave device not responding. If SPI_CSB is kept low, data from consecutive locations is read out on SPI_MISO for each subsequent 16 clocks, until the transaction terminates when SPI_CSB is taken high.
Figure 11.19: Read Operation
11.7.4 Multi-Slave Operation
BlueCore4-External should not be connected in a multi-slave arrangement by simple parallel connection of slave MISO lines. When BlueCore4-External is deselected (SPI_CSB = 1), the SPI_MISO line does not float. Instead, BlueCore4-External outputs 0 if the processor is running or 1 if it is stopped.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 87 of 116
Device Terminal Descriptions
11.8
PCM CODEC Interface
Pulse Code Modulation (PCM) is a standard method used to digitise audio (particularly voice) for transmission over digital communication channels. Through its PCM interface, BlueCore4-External has hardware support for continual transmission and reception of PCM data, thus reducing processor overhead for wireless headset applications. BlueCore4-External offers a bi-directional digital audio interface that routes directly into the baseband layer of the on-chip firmware. It does not pass through the HCI protocol layer. Hardware on BlueCore4-External allows the data to be sent to and received from a SCO connection. (1) Up to three SCO connections can be supported by the PCM interface at any one time. BlueCore4-External can operate as the PCM interface master generating an output clock of 128, 256 or 512kHz. When configured as PCM interface slave, it can operate with an input clock up to 2048kHz. BlueCore4-External is compatible www..com a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing environments. with It supports 13-bit or 16-bit linear, 8-bit -law or A-law companded sample formats at 8ksamples/s and can receive and transmit on any selection of three of the first four slots following PCM_SYNC. The PCM configuration options are enabled by setting the PS Key PS KEY_PCM_CONFIG32 (0x1b3). BlueCore4-External interfaces directly to PCM audio devices including the following: Qualcomm MSM 3000 series and MSM 5000 series CDMA baseband devices OKI MSM7705 four channel A-law and -law CODEC Motorola MC145481 8-bit A-law and -law CODEC Motorola MC145483 13-bit linear CODEC STW 5093 and 5094 14-bit linear CODECs BlueCore4-External is also compatible with the Motorola SSITM interface
_aiEceEQJbniEea~a= Product Data Sheet
(1)
Subject to firmware support. Contact CSR for current status.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 88 of 116
Device Terminal Descriptions
11.8.1 PCM Interface Master/Slave
When configured as the master of the PCM interface, BlueCore4-External generates PCM_CLK and PCM_SYNC.
BlueCore
PCM_OUT
_aiEceEQJbniEea~a= Product Data Sheet
www..com
PCM_IN PCM_CLK PCM_SYNC 128/256/512kHz 8kHz
Figure 11.20: BlueCore4-External as PCM Interface Master When configured as the Slave of the PCM interface, BlueCore4-External accepts PCM_CLK rates up to 2048kHz.
BlueCore
PCM_OUT PCM_IN PCM_CLK PCM_SYNC Upto 2048kHz 8kHz
Figure 11.21: BlueCore4-External as PCM Interface Slave
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 89 of 116
Device Terminal Descriptions
11.8.2 Long Frame Sync
Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When BlueCore4-External is configured as PCM master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8-bits long. When BlueCore4-External is configured as PCM Slave, PCM_SYNC may be from two consecutive falling edges of PCM_CLK to half the PCM_SYNC rate, i.e., 62.5s long.
PCM_SYNC
_aiEceEQJbniEea~a= Product Data Sheet
www..com
PCM_CLK
PCM_OUT
1
2
3
4
5
6
7
8
PCM_IN
Undefined
1
2
3
4
5
6
7
8
Undefined
Figure 11.22: Long Frame Sync (Shown with 8-bit Companded Sample) BlueCore4-External samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge.
11.8.3 Short Frame Sync
In Short Frame Sync, the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is always one clock cycle long.
PCM_SYNC
PCM_CLK
PCM_OUT
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
PCM_IN
Undefined
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
Undefined
Figure 11.23: Short Frame Sync (Shown with 16-bit Sample) As with Long Frame Sync, BlueCore4-External samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 90 of 116
Device Terminal Descriptions
11.8.4 Multi-slot Operation
More than one SCO connection over the PCM interface is supported using multiple slots. Up to three SCO connections can be carried over any of the first four slots.
LONG_PCM_SYNC Or SHORT_PCM_SYNC
_aiEceEQJbniEea~a= Product Data Sheet
www..com
PCM_CLK
PCM_OUT
1
2
3
4
5
6
78
1
2
3
4
5
6
78
PCM_IN
Do Not Care 1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8 Do Not Care
Figure 11.24: Multi-slot Operation with Two Slots and 8-bit Companded Samples
11.8.5 GCI Interface
BlueCore4-External is compatible with the General Circuit Interface (GCI), a standard synchronous 2B+D ISDN timing interface. The two 64Kbps B channels can be accessed when this mode is configured.
PCM_SYNC
PCM_CLK
PCM_OUT
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
PCM_IN
Do Not Care
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Do Not Care
B1 Channel
B2 Channel
Figure 11.25: GCI Interface The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8kHz. With BlueCore4-External in Slave mode, the frequency of PCM_CLK can be up to 4.096MHz.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 91 of 116
Device Terminal Descriptions
11.8.6 Slots and Sample Formats
BlueCore4-External can receive and transmit on any selection of the first four slots following each sync pulse. Slot durations can be either 8 or 16 clock cycles. Durations of 8 clock cycles may only be used with 8-bit sample formats. Durations of 16 clocks may be used with 8-bit, 13-bit or 16-bit sample formats. BlueCore4-External supports 13-bit linear, 16-bit linear and 8-bit -law or A-law sample formats. The sample rate is 8ksamples/s. The bit order may be little or big endian. When 16-bit slots are used, the 3 or 8 unused bits in each slot may be filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some Motorola CODECs.
_aiEceEQJbniEea~a= Product Data Sheet
www..com
PCM_OUT 1 2 3
Sign Extension 4 5 6 7 8 9 10 11 12 13 14 15 16 8-Bit Sample A 16-bit slot with 8-bit companded sample and sign extension selected.
8-Bit Sample PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Zeros Padding A 16-bit slot with 8-bit companded sample and zeros padding selected.
Sign Extension PCM_OUT 1 2 3 4 5 6 7 8 9 10 13-Bit Sample A 16-bit slot with 13-bit linear sample and sign extension selected. 11 12 13 14 15 16
13-Bit Sample PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Audio Gain A 16-bit slot with 13-bit linear sample and audio gain selected. 16
Figure 11.26: 16-Bit Slot Length and Sample Formats
11.8.7 Additional Features
BlueCore4-External has a mute facility that forces PCM_OUT to be 0. In master mode, PCM_SYNC may also be forced to 0 while keeping PCM_CLK running which some CODECS use to control power down.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 92 of 116
Device Terminal Descriptions
11.8.8 PCM Timing Information
Symbol Parameter 4MHz DDS generation. Selection of frequency is programmable. See Table 11.16. fmclk PCM_CLK frequency 48MHz DDS generation. Selection of frequency is programmable. See Table 11.17 and PCM_CLK and PCM_SYNC Generation on page 97. Min Typ 128 256 512 kHz Max Unit
_aiEceEQJbniEea~a= Product Data Sheet
www..com
2.9
-
kHz
tmclkh(a) tmclkl(a) tdmclksynch tdmclkpout tdmclklsyncl tdmclkhsyncl tdmclklpoutz tdmclkhpoutz tsupinclkl thpinclkl
(a)
PCM_SYNC frequency PCM_CLK high PCM_CLK low PCM_CLK jitter 4MHz DDS generation 4MHz DDS generation 48MHz DDS generation
980 730
8 21 -
kHz ns ns ns pk-pk ns ns ns ns ns ns ns ns
Delay time from PCM_CLK high to PCM_SYNC high Delay time from PCM_CLK high to valid PCM_OUT Delay time from PCM_CLK low to PCM_SYNC low (Long Frame Sync only) Delay time from PCM_CLK high to PCM_SYNC low Delay time from PCM_CLK low to PCM_OUT high impedance Delay time from PCM_CLK high to PCM_OUT high impedance Set-up time for PCM_IN valid to PCM_CLK low Hold time for PCM_CLK low to PCM_IN invalid
30 10
-
20 20 20 20 20 20 -
Table 11.14: PCM Master Timing
Assumes normal system clock operation. Figures will vary during low power modes, when system clock speeds are reduced.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 93 of 116
Device Terminal Descriptions
t dmclklsyncl t dmclksynch PCM_SYNC t dmclkhsyncl
f mlk t mclkh t mclkl
_aiEceEQJbniEea~a= Product Data Sheet
www..com
PCM_CLK
t dmclklpoutz t dmclkpout PCM_OUT MSB (LSB) tr ,t f LSB (MSB) t dmclkhpoutz
t supinclkl PCM_IN
t hpinclkl LSB (MSB)
MSB (LSB)
Figure 11.27: PCM Master Timing Long Frame Sync
t dmclksynch PCM_SYNC
t dmclkhsyncl
f mlk t mclkh PCM_CLK t mclkl
t dmclklpoutz t dmclkpout PCM_OUT MSB (LSB) tr ,t f LSB (MSB) t dmclkhpoutz
t supinclkl PCM_IN
t hpinclkl LSB (MSB)
MSB (LSB)
Figure 11.28: PCM Master Timing Short Frame Sync
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 94 of 116
Device Terminal Descriptions
Symbol fsclk fsclk tsclkl tsclkh thsclksynch tsusclksync
h www..com
Parameter PCM clock frequency (Slave mode: input) PCM clock frequency (GCI mode) PCM_CLK low time PCM_CLK high time Hold time from PCM_CLK low to PCM_SYNC high Set-up time for PCM_SYNC high to PCM_CLK low Delay time from PCM_SYNC or PCM_CLK whichever is later, to valid PCM_OUT data (Long Frame Sync only) Delay time from CLK high to PCM_OUT valid data Delay time from PCM_SYNC or PCM_CLK low, whichever is later, to PCM_OUT data line high impedance Set-up time for PCM_IN valid to CLK low Hold time for PCM_CLK low to PCM_IN invalid
Min 64 128 200 200 30 30 30 30
Typ -
Max 2048 4096 20 20 20 -
Unit kHz kHz ns ns ns ns ns ns ns ns ns
_aiEceEQJbniEea~a= Product Data Sheet
tdpout tdsclkhpout tdpoutz tsupinsclkl thpinsclkl
Table 11.15: PCM Slave Timing
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 95 of 116
Device Terminal Descriptions
f sclk t sclkh PCM_CLK t tsclkl
t hsclksynch PCM_SYNC
t susclksynch
_aiEceEQJbniEea~a= Product Data Sheet
www..com
t dpoutz t dpout PCM_OUT MSB (LSB) t dsclkhpout tr ,t f LSB (MSB) t dpoutz
t supinsclkl PCM_IN
t hpinsclkl LSB (MSB)
MSB (LSB)
Figure 11.29: PCM Slave Timing Long Frame Sync
f sclk t sclkh PCM_CLK t tsclkl
t susclksynch PCM_SYNC
t hsclksynch
t dsclkhpout PCM_OUT MSB (LSB)
tr ,t f LSB (MSB)
t dpoutz
t dpoutz
t supinsclkl PCM_IN
t hpinsclkl LSB (MSB)
MSB (LSB)
Figure 11.30: PCM Slave Timing Short Frame Sync
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 96 of 116
Device Terminal Descriptions
PCM_CLK and PCM_SYNC Generation BlueCore4-External has two methods of generating PCM_CLK and PCM_SYNC in master mode. The first is generating these signals by Direct Digital Synthesis (DDS) from BlueCore4-External internal 4MHz clock (which is used in BlueCore2-External). Using this mode limits PCM_CLK to 128, 256 or 512kHz and PCM_SYNC to 8kHz. The second is generating PCM_CLK and PCM_SYNC by DDS from an internal 48MHz clock (which allows a greater range of frequencies to be generated with low jitter but consumes more power). This second method is selected by setting bit 48M_PCM_CLK_GEN_EN in PSKEY_PCM_CONFIG32. When in this mode and with long frame sync, the length of PCM_SYNC can be either 8 or 16 cycles of PCM_CLK, determined by LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32. The Equation 11.11 describes PCM_CLK frequency when being generated using the internal 48MHz clock:
_aiEceEQJbniEea~a= Product Data Sheet
www..com
f=
CNT _ RATE x 24MHz CNT _ LIMIT
Equation 11.11: PCM_CLK Frequency When Being Generated Using the Internal 48MHz Clock The frequency of PCM_SYNC relative to PCM_CLK can be set using Equation 11.12:
f=
PCM _ CLK SYNC _ LIMIT x 8
Equation 11.12: PCM_SYNC Frequency Relative to PCM_CLK CNT_RATE, CNT_LIMIT and SYNC_LIMIT are set using PSKEY_PCM_LOW_JITTER_CONFIG. As an example, to generate PCM_CLK at 512kHz with PCM_SYNC at 8kHz, set PSKEY_PCM_LOW_JITTER_CONFIG to 0x08080177.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 97 of 116
Device Terminal Descriptions
11.8.9 PCM Configuration
The PCM configuration is set using two PS Keys, PSKEY_PCM_CONFIG32 detailed in Table 11.16 and PSKEY_PCM_LOW_JITTER_CONFIG in Table 11.17. The default for PSKEY_PCM_CONFIG32 is 0x00800000, i.e., first slot following sync is active, 13-bit linear voice format, long frame sync and interface master generating 256kHz PCM_CLK from 4MHz internal clock with no tri-state of PCM_OUT.
Name www..com
Bit Position 0
Description Set to 0 0 = master mode with internal generation of PCM_CLK and PCM_SYNC. 1 = slave mode requiring externally generated PCM_CLK and PCM_SYNC. 0 = long frame sync (rising edge indicates start of frame). 1 = short frame sync (falling edge indicates start of frame). Set to 0. 0 = padding of 8 or 13-bit voice sample into a 16-bit slot by inserting extra LSBs. When padding is selected with 13-bit voice sample, the 3 padding bits are the audio gain setting; with 8-bit sample the 8 padding bits are zeroes. 1 = sign-extension.
_aiEceEQJbniEea~a= Product Data Sheet
SLAVE_MODE_EN
1
SHORT_SYNC_EN -
2 3
SIGN_EXTEND_EN
4
LSB_FIRST_EN
5
0 = MSB first of transmit and receive voice samples. 1 = LSB first of transmit and receive voice samples. 0 = drive PCM_OUT continuously.
TX_TRISTATE_EN
6
1 = tri-state PCM_OUT immediately after falling edge of PCM_CLK in the last bit of an active slot, assuming the next slot is not active. 0 = tri-state PCM_OUT immediately after falling edge of PCM_CLK in last bit of an active slot, assuming the next slot is also not active. 1 = tri-state PCM_OUT after rising edge of PCM_CLK. 0 = enable PCM_SYNC output when master.
TX_TRISTATE_RISING_EDGE_EN
7
SYNC_SUPPRESS_EN GCI_MODE_EN MUTE_EN
8 9 10
1 = suppress PCM_SYNC whilst keeping PCM_CLK running. Some CODECS utilise this to enter a low power state. 1 = enable GCI mode 1 = force PCM_OUT to 0 0 = set PCM_CLK and PCM_SYNC generation via DDS from internal 4 MHz clock. 1 = set PCM_CLK and PCM_SYNC generation via DDS from internal 48 MHz clock. 0 = set PCM_SYNC length to 8 PCM_CLK cycles.
48M_PCM_CLK_GEN_EN
11
LONG_LENGTH_SYNC_EN
12
1 = set length to 16 PCM_CLK cycles. Only applies for long frame sync and with 48M_PCM_CLK_GEN_EN set to 1.
-
[20:16]
Set to 0b00000
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 98 of 116
Device Terminal Descriptions
Name MASTER_CLK_RATE ACTIVE_SLOT SAMPLE_FORMAT
Bit Position [22:21] [26:23] [28:27]
Description Selects 128 (0b01), 256 (0b00), 512 (0b10) kHz PCM_CLK frequency when master and 48M_PCM_CLK_GEN_EN (bit 11) is low. Default is 0001. Ignored by firmware. Selects between 13 (0b00), 16 (0b01), 8 (0b10) bit sample with 16 cycle slot duration or 8 (0b11) bit sample with 8 cycle slot duration.
Table 11.16: PSKEY_PCM_CONFIG32 Description
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Name CNT_LIMIT CNT_RATE SYNC_LIMIT
Bit Position [12:0] [23:16] [31:24]
Description Sets PCM_CLK counter limit Sets PCM_CLK count rate Sets PCM_SYNC division relative to PCM_CLK
Table 11.17: PSKEY_PCM_LOW_JITTER_CONFIG Description
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 99 of 116
Device Terminal Descriptions
11.9
I/O Parallel Ports
PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs. All PIO lines are configured as inputs with weak pull-downs at reset. PIO[0] and PIO[1] are normally dedicated to RXEN and TXEN respectively, but they are available for general use. Any of the PIO lines can be configured as interrupt request lines or as wake-up lines from sleep modes. PIO[6] or PIO[2] can be configured as a request line for an external clock source. This is useful when the clock to BlueCore4-External is provided from a system application specific integrated circuit (ASIC). Using PSKEY_CLOCK_REQUEST_ENABLE (0x246), this terminal can be configured to be low when BlueCore4-External is in Deep Sleep and high when a clock is required. The clock must be supplied within 4ms of the rising edge of PIO[6] or PIO[2] to avoid losing timing accuracy in certain Bluetooth operating modes.
_aiEceEQJbniEea~a= Product Data Sheet
www..com BlueCore4-External has three general purpose analogue interface pins, AIO[0], AIO[1] and AIO[2]. These are used to
access internal circuitry and control signals. One pin is allocated to decoupling for the on-chip band gap reference voltage, the other two may be configured to provide additional functionality. Auxiliary functions available via these pins include an 8-bit ADC and an 8-bit DAC. Typically the ADC is used for battery voltage measurement. Signals selectable at these pins include the band gap reference voltage and a variety of clock signals: 48, 24, 16, 8MHz and the XTAL clock frequency. When used with analogue signals, the voltage range is constrained by the analogue supply voltage (1.8V). When configured to drive out digital level signals (e.g., clocks), the output voltage level is determined by VDD_MEM (1.8V).
11.9.1 PIO Defaults for BlueCore4-External
CSR cannot guarantee that these terminal functions remain the same. Refer to the software release note for the implementation of these PIO lines, as they are firmware build-specific.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 100 of 116
Device Terminal Descriptions
11.10
I2C Interface
PIO[8:6] can be used to form a master I2C interface. The interface is formed using software to drive these lines. Therefore, it is suited only to relatively slow functions such as driving a dot matrix liquid crystal display (LCD), keyboard scanner or EEPROM.
Notes:
PIO lines need to be pulled-up through 2.2k resistors. PIO[7:6] dual functions, UART bypass and EEPROM support, therefore, devices using an EEPROM cannot support UART bypass mode. For connection to EEPROMs, refer to CSR documentation on I2C EEPROMS for use with BlueCore. This provides information on the type of devices currently supported.
www..com
_aiEceEQJbniEea~a= Product Data Sheet
+1.8V
10nF 2.2K 2.2K 2.2K U2 8 PIO[8] PIO[6] PIO[7] 7 6 5 VCC WP SCL SDA A0 A1 A2 GND 1 2 3 4
Serial EEPROM (AT24C16A)
Figure 11.31: Example EEPROM Connection
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 101 of 116
Device Terminal Descriptions
11.11
TCXO Enable OR Function
An OR function exists for clock enable signals from a host controller and BlueCore4-External where either device can turn on the clock without having to wake up the other device. PIO[3] can be used as the host clock enables input and PIO[2] can be used as the OR output with the TCXO enable signal from BlueCore4-External.
VDD
GSM System TCXO
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Enable
CLK IN CLK REQ OUT
BlueCore System CLK REQ IN/ PIO[3] CLK IN CLK REQ OUT/ PIO[2]
Figure 11.32: Example TXCO Enable OR Function On reset and up to the time the PIO has been configured, PIO[2] will be tri-state. Therefore, the developer must ensure that the circuitry connected to this pin is pulled via a 470k resistor to the appropriate power rail. This ensures that the TCXO is oscillating at start up.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 102 of 116
Device Terminal Descriptions
11.12
RESETB
BlueCore4-External may be reset from several sources: RESETB pin, power on reset, a UART break character or via a software configured watchdog timer. The RESETB pin is an active low reset and is internally filtered using the internal low frequency clock oscillator. A reset will be performed between 1.5 and 4.0ms following RESETB being active. It is recommended that RESETB be applied for a period greater than 5ms. The power on reset occurs when the VDD_CORE supply falls below typically 1.5V and is released when VDD_CORE rises above typically 1.6V. At reset the digital I/O pins are set to inputs for bi-directional pins and outputs are tri-state. The PIOs have weak pull-downs.
www..com
_aiEceEQJbniEea~a= Product Data Sheet
Following a reset, BlueCore4-External assumes the maximum XTAL_IN frequency, which ensures that the internal clocks run at a safe (low) frequency until BlueCore4-External is configured for the actual XTAL_IN frequency. If no clock is present at XTAL_IN, the oscillator in BlueCore4-External free runs, again at a safe frequency.
11.12.1 Pin States on Reset
Table 11.18 shows the pin states of BlueCore4-External on reset.
Pin Name PIO[11:0] PCM_OUT PCM_IN PCM_SYNC PCM_CLK UART_TX UART_RX UART_RTS UART_CTS USB_DP USB_DN SPI_CSB SPI_CLK SPI_MOSI SPI_MISO AIO[2:0] RESETB TEST_EN RF_A RF_B RF_IN XTAL_IN XTAL_OUT
State: BlueCore4-External Input with weak pull-down Tri-stated with weak pull-down Input with weak pull-down Input with weak pull-down Input with weak pull-down Output tri-stated with weak pull-up Input with weak pull-down Output tri-stated with weak pull-up Input with weak pull-down Input with weak pull-down Input with weak pull-down Input with weak pull-up Input with weak pull-down Input with weak pull-down Output tri-stated with weak pull-down Output, driving low Input with weak pull-up Input with strong pull-down High impedance High impedance High impedance High impedance, 250k to XTAL_OUT High impedance, 250k to XTAL_IN Table 11.18: Pin States of BlueCore4-External on Reset
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 103 of 116
Device Terminal Descriptions
11.12.2 Status after Reset
The chip status after a reset is as follows: Warm Reset: Baud rate and RAM data remain available Cold Reset(1) : Baud rate and RAM data not available
_aiEceEQJbniEea~a= Product Data Sheet
www..com
(1)
A Cold Reset is either Power cycle, system reset (firmware fault code) or Reset signal. See section 11.12.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 104 of 116
Device Terminal Descriptions
11.13
Power Supply
11.13.1 Voltage Regulator
An on-chip linear voltage regulator can be used to power the 1.8V dependent supplies. It is advised that a smoothing circuit using a 2.2F low ESR capacitor and 2.2 resistor be placed on the output VDD_ANA adjacent to VREG_IN. The regulator is switched into a low power mode when the device is sent into Deep Sleep mode. When the on-chip regulator is not required VDD_ANA is a 1.8V input and VREG_IN must be either open circuit or tied to VDD_ANA.
11.13.2 Sequencing
It is recommended that VDD_CORE, VDD_RADIO, VDD_LO and VDD_ANA be powered at the same time. The order of powering supplies for VDD_CORE, VDD_PIO, VDD_PADS and VDD_USB is not important. However, if www..com VDD_CORE is not present, all inputs have a weak pull-down irrespective of the reset state.
_aiEceEQJbniEea~a= Product Data Sheet
11.13.3 Sensitivity to Disturbances
CSR recommends if supplying BlueCore4-External from an external voltage source that VDD_LO, VDD_ANA and VDD_RADIO should have less than 10mV rms noise levels between 0 to 10MHz. In addition, avoid single tone frequencies. CSR recommends a simple RC filter for VDD_CORE, as this reduces transients put back onto the power supply rails. The remaining supplies VDD_MEM, VDD_PIO, VDD_PADS and VDD_USB can be connected together with the VREG_IN to the 3.3V supply and simply decoupled as shown in Figure 12.1. The transient response of the regulator is also important. At the start of a packet, power consumption will jump to high levels. See the average current consumption section. The regulator should have a response time of 20s or less; it is essential that the power rail recovers quickly.
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 105 of 116
Application Schematic
12 Application Schematic
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 12.1: Application Circuit for Radio Characteristics Specification
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 106 of 116
Package Dimensions
13 Package Dimensions
13.1 8 x 8mm TFBGA 96-Ball Package
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 13.1: BlueCore4-External 96-Ball TFBGA Package Dimensions
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 107 of 116
Package Dimensions
13.2
6 x 6mm VFBGA 96-Ball Package
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Figure 13.2: BlueCore4-External 96-Ball VFBGA Package Dimensions
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 108 of 116
Ordering Information
14 Ordering Information
14.1 BlueCore4-External
Package Type 96-Ball TFBGA (Pb free) 96-Ball VFBGA (Pb free) Size 8 x 8 x 1.2mm Shipment Method Tape and reel
Interface Version
Order Number
UART and USB
BC417143B-IQN-E4
_aiEceEQJbniEea~a= Product Data Sheet
www..com and USB UART
6 x 6 x 1mm
Tape and reel
BC417143B-IRN-E4
Minimum Order Engineering Sample Quantity
2kpcs taped and reeled
Minimum Order Production Quantity
2kpcs taped and reeled
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 109 of 116
RoHS Statement with a List of Banned Materials
15 RoHS Statement with a List of Banned Materials
15.1 RoHS Statement
BlueCore4-External where explicitly stated in this Data Sheet meets the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substance (RoHS).
15.1.1 List of Banned Materials
The following banned substances are not present in BlueCore4-External which is compliant with RoHS: Cadmium Lead
_aiEceEQJbniEea~a= Product Data Sheet
www..com
Mercury Hexavalent chromium PBB (Polybrominated Bi-Phenyl) PBDE (Polybrominated Diphenyl Ether)
In addition, BlueCore4-External is free from the following substances: PVC (Poly Vinyl Chloride)
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 110 of 116
Contact Information
16 Contact Information
_aiEceEQJbniEea~a= Product Data Sheet
www..com
CSR UK Churchill House Cambridge Business Park Cowley Road Cambridge, CB4 0WZ United Kingdom Tel: +44 (0) 1223 692 000 Fax: +44 (0) 1223 692 001 e-mail: sales@csr.com
CSR Denmark Novi Science Park Niels Jernes Vej 10 9220 Aalborg East Denmark Tel: +45 72 200 380 Fax: +45 96 354 599 e-mail: sales@csr.com
CSR Japan CSR KK 9F Kojimachi KS Square 5-3-3, Kojimachi, Chiyoda-ku, Tokyo 102-0083 Japan Tel: +81-3-5276-2911 Fax: +81-3-5276-2915 e-mail: sales@csr.com
CSR Korea 2nd Floor, Hyo-Bong Building, 1364-1, Seocho-dong, Seocho-gu, Seoul 137-863, Korea Tel: +82 2 3473 2372-5 Fax : +82 2 3473 2205 e-mail: sales@csr.com
CSR Taiwan 6th Floor, No. 407, Rui Guang Road, NeiHu, Taipei 114, Taiwan, R.O.C. Tel: +886 2 7721 5588 Fax: +886 2 7721 5589 e-mail: sales@csr.com
CSR U.S. 2425 N. Central Expressway Suite 1000 Richardson Texas 75080 USA Tel: +1 (972) 238 2300 Fax: +1 (972) 231 1440 e-mail: sales@csr.com
To contact a CSR representative, go to www.csr.com/contacts.htm
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 111 of 116
Document References
17 Document References
Document: Specification of the Bluetooth System Universal Serial Bus Specification Selection of I2C EEPROMS for Use with BlueCore EDR RF Test Specification v2.0.E.2 RF Prototyping Specification for Enhanced Data Rate IP
www..com
Reference, Date: v2.0 + EDR, 04 November 2004 v2.0, 27 April 2000 bcore-an008Pb, 30 September 2003 v2.0.E.20, D07r22, 16 March 2004 v.90, r29, 2004
_aiEceEQJbniEea~a= Product Data Sheet
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 112 of 116
Terms and Definitions
18 Terms and Definitions
8DPSK /4 DQPSK BlueCoreTM BluetoothTM ACL ADC
www..com
8 phase Differential Phase Shift Keying pi/4 rotated Differential Quaternary Phase Shift Keying Group term for CSR's range of Bluetooth chips Set of technologies providing audio and data transfer over short-range radio connections Asynchronous Connection-Less. Bluetooth data packet Analogue to Digital Converter Adaptive Frequency Hopping Automatic Gain Control Audio encoding standard Arithmetic Logic Unit Application Programming Interface Application Specific Integrated Circuit BlueCoreTM Serial Protocol Bit Error Rate. Used to measure the quality of a link Built-In Self-Test Burst Mode Controller Code Division Multiple Access Complementary Metal Oxide Semiconductor Coder Decoder Channel Quality Driven Data Rate Cyclic Redundancy Check Chip Select (Active Low) Cambridge Silicon Radio Clear to Send Continuous Variable Slope Delta Modulation Digital to Analogue Converter Decibels relative to 1mW Direct Current Differential Error Vector Magnitude Device Firmware Upgrade Differential Phase Shift Keying Differential Quarternary Phase Shift Keying Equivalent Series Resistance Frequency Shift Keying Global System for Mobile communications Host Controller Interface
_aiEceEQJbniEea~a= Product Data Sheet
AFH AGC A-law ALU API ASIC BCSP BER BIST BMC CDMA CMOS CODEC CQDDR CRC CSB CSR CTS CVSD DAC dBm DC DEVM DFU DPSK DQPSK ESR FSK GSM HCI
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 113 of 116
Terms and Definitions
I2CTM IF IIR INL IQ Modulation ISDN ISM ksps L2CAP www..com LC LCD LNA LPF LSB -law MCU MMU MISO MOSI Mbps OHCI PA PCM PIO PLL ppm PS Key RAM REB REF RF RFCOMM RISC rms RoHS RSSI RTS RX
Inter-Integrated Circuit Intermediate Frequency Infinite Impulse Response Integral Linearity Error In-Phase and Quadrature Modulation Integrated Services Digital Network Industrial, Scientific and Medical KiloSamples Per Second
_aiEceEQJbniEea~a= Product Data Sheet
Logical Link Control and Adaptation Protocol (protocol layer) Link Controller Liquid Crystal Display Low Noise Amplifier Low Pass Filter Least-Significant Bit Audio Encoding Standard MicroController Unit Memory Management Unit Master In Serial Out Master Out Slave In Mega bits per second Open Host Controller Interface Power Amplifier Pulse Code Modulation. Refers to digital voice data Parallel Input Output Phase Lock Loop parts per million Persistent Store Key Random Access Memory Read enable (Active Low) Reference. Represents dimension for reference use only. Radio Frequency Protocol layer providing serial port emulation over L2CAP Reduced Instruction Set Computer root mean squared The Restriction of Hazardous Substances in Electrical and Electronic Equipment Directive (2002/95/EC) Receive Signal Strength Indication Ready To Send Receive or Receiver
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 114 of 116
Terms and Definitions
SCO SD SDK SDP SPI SSI TBA TBD TCXO www..com TFBGA TX UART UHCI USB VCO VFBGA VM W-CDMA WEB
Synchronous Connection-Oriented. Voice oriented Bluetooth packet Secure Digital Software Development Kit Service Discovery Protocol Serial Peripheral Interface Synchronous Serial Interface To Be Announced To Be Defined
_aiEceEQJbniEea~a= Product Data Sheet
Temperature Controlled crystal Oscillator Thin Fine-Pitch Ball Grid Array Transmit or Transmitter Universal Asynchronous Receiver Transmitter Upper Host Control Interface Universal Serial Bus or Upper Side Band (depending on context) Voltage Controlled Oscillator Very Fine Ball Grid Array Virtual Machine Wideband Code Division Multiple Access Write Enable (Active Low)
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 115 of 116
Document History
19 Document History
Date 03 JUN 04 15 JUN 04 06 SEP 04 23 FEB 05
www..com 15 MAR 05
Revision a b c d e
Reason for Change Original publication of this document. (CSR reference: BC417143B-ds-001Pa) Numbering changes made to AIO pins. 6 x 6mm package option added to data sheet and AUX DAC removed. Radio Characteristics - Basic Data Rate section added. Radio Characteristics Enhanced Data Rate section updated.
_aiEceEQJbniEea~a= Product Data Sheet
Package information updated, including Package Dimensions section. Radio Characteristics - Basic Data Rate section updated. Radio Characteristics - Enhanced Data Rate section updated.
10 MAY 05
f
Typical Radio Performance - Basic Data Rate section added. Typical Radio Performance - Enhanced Data Rate section added.
Document moved to Production Information status. Added following to Databook: Solder Profile Information 27 JUL 05 g PCB Design and Assembly Considerations Tape and Reel Information RoHS Information Corrected title typos in Typical Radio Performance - Enhanced Data Rate
_aiEceEQJbniEea~a Product Data Sheet BC417143B-DS-001Pg July 2005
BC417143B-ds-001Pg
Production Information (c) Cambridge Silicon Radio Limited 2005
Page 116 of 116


▲Up To Search▲   

 
Price & Availability of BC417143B-IQN-E4

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X